留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe原位改性小晶粒Silicalite-1分子筛催化醛氨缩合性能研究

陶金泉 贾亦静 白天瑜 黄文斌 崔岩 周亚松 魏强

陶金泉, 贾亦静, 白天瑜, 黄文斌, 崔岩, 周亚松, 魏强. Fe原位改性小晶粒Silicalite-1分子筛催化醛氨缩合性能研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60443-3
引用本文: 陶金泉, 贾亦静, 白天瑜, 黄文斌, 崔岩, 周亚松, 魏强. Fe原位改性小晶粒Silicalite-1分子筛催化醛氨缩合性能研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60443-3
TAO Jinquan, JIA Yijing, BAI Tianyu, HUANG Wenbin, CUI Yan, ZHOU Yasong, WEI Qiang. Study on the catalytic performance of fe in situ modified small crystallite silicalite-1 zeolite in chichibabin condensation reaction[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60443-3
Citation: TAO Jinquan, JIA Yijing, BAI Tianyu, HUANG Wenbin, CUI Yan, ZHOU Yasong, WEI Qiang. Study on the catalytic performance of fe in situ modified small crystallite silicalite-1 zeolite in chichibabin condensation reaction[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60443-3

Fe原位改性小晶粒Silicalite-1分子筛催化醛氨缩合性能研究

doi: 10.1016/S1872-5813(24)60443-3
详细信息
    通讯作者:

    魏强. E-mail: qwei@cup.edu.cn

  • 中图分类号: O643.36

Study on the catalytic performance of fe in situ modified small crystallite silicalite-1 zeolite in chichibabin condensation reaction

  • 摘要: 吡啶及其衍生物统称为吡啶碱,其广泛应用于农药、医药等领域。Chichibabin醛氨缩合反应是目前工业制取吡啶碱最广泛的路线。目前,使用最广泛的ZSM-5分子筛受制于硅铝骨架结构的不稳定性,高活性反应周期较短(5 h),针对这一问题,本研究选用热稳定性、水热稳定性优异的Silicalite-1分子筛,使用聚乙烯吡咯烷酮(PVP)作为胶体分散剂,在水热合成分子筛的过程中向骨架中引入Fe,结合XRD、SEM、TG、BET、NH3-TPD、Py-FTIR等表征方法探究了晶化条件对Silicalite-1分子筛结晶度、孔结构和酸性质的影响。实验结果表明,在晶种投入量15%、PVP添加量3.75%时产品相对结晶度达到最高(103%),粒径约为200 nm。改性后的Silicalite-1具有更丰富的酸位点,醛氨缩合反应的初始活性由66%增加至85%,在反应进行15 h后,原料转化率和吡啶碱收率分别保持在66%和40%以上。研究提出的原位改性Silicalite-1分子筛策略极大扩宽了纯硅沸石在酸催化领域的应用,具有显著的科研价值和工业化潜力。
  • 图  1  Silicalite-1晶种的XRD谱图和SEM图像

    Figure  1  XRD spectrum and SEM photographs of Silicalite-1 SEED

    图  2  不同晶种加入量合成Fe-S-1分子筛XRD谱图

    Figure  2  XRD spectrum of Fe-S-1 zeolites synthesized under different seed addition amounts conditions

    图  3  不同晶种加入量合成Fe-S-1分子筛SEM图像

    Figure  3  SEM photographs of Silicalite-1 zeolites synthesized under different seed addition amounts conditions(n(SiO2)SEED/n(SiO2)total=x%, x=0 (a), x=5 (b), x=10 (c), x=15 (d))

    图  4  不同TPAOH加入量合成Fe-S-1分子筛XRD谱图

    Figure  4  XRD spectrum of Fe-S-1 zeolites synthesized under different TPAOH addition amounts conditions

    图  5  Fe-S-1分子筛的合成过程示意图

    Figure  5  Schematic diagram of the synthesis process of Fe-S-1 zeolite

    图  6  不同PVP添加量合成Fe-S-1分子筛XRD谱图

    Figure  6  XRD spectrum of Fe-S-1 zeolites synthesized under different PVP addition amounts conditions

    图  7  不同PVP添加量合成Fe-S-1分子筛SEM图像

    Figure  7  SEM photographs of Fe-S-1 zeolites synthesized under different PVP addition amounts conditions

    (a): 0% PVP; (b): 2.5% PVP; (c): 3.75% PVP; (d): EDS for 3.75%PVP sample (c+).

    图  8  PVP添加量3.75%时合成Fe-S-1分子筛的TEM图像

    Figure  8  TEM photographs of Fe-S-1 zeolites synthesized with 3.75% PVP

    图  9  TS-S-1分子筛(a)和Fe-S-1分子筛(b)的TG/DTG曲线

    Figure  9  TG/DTG spectrum of TS-S-1 zeolite (a) and Fe-S-1 zeolite (b)

    图  10  Fe-S-1分子筛的酸性表征与分析

    Figure  10  (a) Py-FTIR spectrum, (b) NH3-TPD spectrum, (c) XPS spectrum and (d) FT-IR spectrum of Fe-S-1 zeolite

    图  11  TS-S-1和T-S-1催化剂的总碳转化率(a),吡啶碱收率(b)和吡啶碱选择性(c)Fe-S-1、TS-S-1与HZSM-5催化剂的总碳转化率(d),吡啶碱收率(e)和吡啶碱选择性(f)

    Figure  11  Total carbon conversion rate (a), pyridine bases yield (b), and pyridine bases selectivity (c) of TS-S-1 and T-S-1 catalysts,Total carbon conversion rate (d), pyridine bases yield (e), and pyridine bases selectivity(f) of Fe-S-1, TS-S-1, and HZSM-5 catalysts

    图  12  新鲜催化剂(a)与反应后催化剂(b)的XRD谱图

    Figure  12  XRD spectrum of the fresh catalyst (a) and the catalyst after reaction (b)

    表  1  Silicalite-1分子筛的孔结构

    Table  1  Pore structure properties of Silicalite-1 zeolites

    Sample PVP/% SBET/(m2·g−1) SMicro/(m2·g−1) vTotal/(cm3·g−1) vMicro/(cm3·g−1) vMeso/(cm3·g−1)
    Fe-S-1 3.75 348 215 0.18 0.10 0.08
    TS-S-1 3.75 341 211 0.18 0.11 0.07
    TS-S-1 357 231 0.18 0.11 0.07
    T-S-1 3.75 302 235 0.19 0.11 0.08
    T-S-1 311 247 0.18 0.11 0.07
    下载: 导出CSV

    表  2  Fe-S-1分子筛样品元素分析与酸性

    Table  2  Elemental composition analysis and acidity of Fe-S-1 zeolite sample

    Sample PVP addition
    amount/%
    Fe/% Si/% Fe/Si Acidityc/(μmol·g−1)
    balka surfaceb balka surfaceb balka surfaceb 200 ℃ 300 ℃
    BASd LASe BASd LASe
    Fe-S-1 3.75 2.39 2.21 23.24 22.12 0.10 0.10 7.2 19.9 5.8 7.9
    Fe-S-1 2.5 1.91 1.59 20.31 19.41 0.09 0.08 6.3 16.3 4.9 8.1
    TS-S-1 0 24.12 22.60 1.3 6.7 0.8 3.0
    a: ICP test result; b: XPS test result; c: Py-FTIR test result; d: Brønsted acid site; e: Lewis acid site.
    下载: 导出CSV

    表  3  反应前后催化剂的孔结构和酸性质对比

    Table  3  Comparison of the pore structure and acidity properties of the catalyst before and after the reaction

    Sample Before reaction After reaction Acid loss/% SBET loss/% R.C.% lossa
    Total acid/(μmol·g−1) SBET/(m2·g−1) Total acid/(μmol·g−1) SBET/(m2·g−1)
    200HZ-5 594 351 210 195 64.5 44.4 67
    130HZ-5 1791 345 415 206 77.6 40.2 71
    70HZ-5 2166 383 598 163 72.4 57.4 77
    TS-S-1 47 357 16 233 65.9 34.7 29
    Fe-S-1 227 348 127 261 44.8 26.8 33
    Note: (a) the difference in relative crystallinity (R.C.%) between fresh catalyst and waste catalyst before and after the reaction
    下载: 导出CSV
  • [1] JIN F, CUI Y, LI Y. Effect of alkaline and atom-planting treatment on the catalytic performance of ZSM-5 catalyst in pyridine and picolines synthesis[J/OL]. Appl Catal A: gen, 2008, 350(1): 71-78.
    [2] JIN F, TIAN Y, LI Y. Effect of alkaline treatment on the catalytic performance of ZSM-5 catalyst in pyridine and picolines synthesis[J/OL]. Ind Eng Chem res, 2009, 48(4): 1873-1879.
    [3] LUO C W, FENG X Y, LIU W, et al. Deactivation and regeneration on the ZSM-5-based catalyst for the synthesis of pyridine and 3-picoline[J/OL]. Micropor Mesopor Mat, 2016, 235: 261-269.
    [4] PALA-ROSAS I, CONTRERAS J L, SALMONES J, et al. Effects of the acidic and textural properties of Y-Type zeolites on the synthesis of pyridine and 3-picoline from acrolein and ammonia[J/OL]. Catalysts, 2023, 13(4): 652.
    [5] BOOSA V, VARIMALLA S, DUMPALAPALLY M, et al. Influence of brønsted acid sites on chemoselective synthesis of pyrrolidones over H -ZSM-5 supported copper catalyst[J/OL]. Appl Catal B: environ, 2021, 292: 120177.
    [6] CALVIN J R, DAVIS R D, MCATEER C H. Mechanistic investigation of the catalyzed vapor-phase formation of pyridine and quinoline bases using 13CH2O, 13CH3OH, and deuterium-labeled aldehydes[J/OL]. Appl Catal A-gen, 2005, 285(1): 1-23.
    [7] LUO C W, CHAO Z S, LEI B, et al. The mild liquid-phase synthesis of 3-picoline from acrolein diethyl acetal and ammonia over heterogeneous catalysts[J/OL]. Ees, 2017, 94(1): 012031.
    [8] KULKARNI S J, RAO R R, SUBRAHMANYAM M, et al. Synthesis of pyridine and picolines from ethanol over modified ZSM-5 catalysts[J/OL]. Appl Catal A-gen, 1994, 113(1): 1-7.
    [9] ZHANG X, LI Y, HUO Y, et al. Synthesis of pyridine bases from ethanol, methanol and ammonia over micro-mesoporous Zn–OH/HZSM-5 catalyst[J/OL]. Micropor Mesopor Mat, 2020, 306: 110442.
    [10] JIANG F, HUANG J J, XIAO W Y, et al. Synthesis of picolines over metal modified HZSM-5 catalyst[J/OL]. Asian J Chem, 2015, 27(7): 2415-2419.
    [11] SINGH, BALDEV, Role of acidity of pillared inter-layered clay (PILC) for the synthesis of pyridine bases[J/OL]. J Chem technol Biot, 1998, 71(3): 246-252.
    [12] YAMAMURA M, CHAKI K, WAKATSUKI T, et al. Synthesis of ZSM -5 zeolite with small crystal size and its catalytic performance for ethylene oligomerization[J/OL]. Zeolites, 1994, 14(8): 643-649.
    [13] XIAO J, LI H, ZHU G bin. Hierarchically porous MFI zeolite synthesized by zeolite seeding and alkaline steaming-mediated crystallization[J/OL]. Adv Powder Technol, 2016, 27(4): 1396-1403.
    [14] YANG X, DIB E, LANG Q, et al. Silicalite-1 formation in acidic medium: synthesis conditions and physicochemical properties[J/OL]. Micropor Mesopor Mat, 2022, 329: 111537.
    [15] NAWAB M, BAROT S, BANDYOPADHYAY R. Nano-sized Silicalite-1: novel route of synthesis, metal impregnation and its application in selective oxidation of toluene[J/OL]. J Chem Sci, 2018, 131(1): 2.
    [16] SUÁREZ S, POSTOLACHE R, GARCÍA-GARCÍA F J, et al. Silicalite-1 synthesized with geothermal and ludox colloidal silica and corresponding TiO2/Silicalite-1 hybrid photocatalysts for VOC oxidation[J/OL]. Micropor Mesopor Mat, 2020, 302: 110202.
    [17] CRECI S, WANG X, CARLSSON P A, et al. Tuned acidity for catalytic reactions: synthesis and characterization of Fe-and Al-MFI zeotypes[J/OL]. Top Catal, 2019, 62(7): 689-698.
    [18] LIU H, WANG H, XING A H, et al. Effect of Al distribution in MFI framework channels on the catalytic performance of ethane and ethylene aromatization[J/OL]. J Phys Chem C, 2019, 123(25): 15637-15647.
    [19] THONGKAM M, WORAMONGKOLCHAI S, SAOWSUPA S, et al. A facile method to synthesize b -oriented Silicalite-1 thin film[J/OL]. Membranes, 2022, 12(5): 520.
    [20] KUZ’MICHEVA G, CHERNYSHEV V, KRAVCHENKO G, et al. Impact of composition and structural parameters on the catalytic activity of MFI type titanosilicalites[J/OL]. Dalton T, 2022, 51(9): 3439-3451.
    [21] GAO M, GONG Z, WENG X, et al. Methane combustion over palladium catalyst within the confined space of MFI zeolite[J/OL]. Chinese J Catal, 2021, 42(10): 1689-1699.
    [22] PERATHONER S, PINO F, CENTI G, et al. Benzene selective oxidation with N2O on Fe/MFI catalysts: Role of zeolite and iron sites on the deactivation mechanism[J/OL]. Top Catal, 2003, 23(1): 125-136.
    [23] NAUMANN D’ALNONCOURT R, FRIEDRICH M, KUNKES E, et al. Strong metal–support interactions between palladium and iron oxide and their effect on CO oxidation[J/OL]. J Catal, 2014, 317: 220-228.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-27
  • 修回日期:  2024-03-20
  • 录用日期:  2024-03-20
  • 网络出版日期:  2024-04-10

目录

    /

    返回文章
    返回