留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Refined Ni, Co-Induced Synthesis of NiCoP Nanoparticles Uniformly Embedded in NCNTs: A Robust Dual-Functional Electrocatalyst for Water Splitting

ZHANG Xupeng ZHAN Junling WANG Ying LIU Qun ZHANG Yu WANG Jiabo CHEN Li

张旭鹏, 展俊岭, 王莹, 刘群, 张钰, 王嘉博, 陈黎. Ni, Co诱导合成嵌有高分散NiCoP纳米粒子的NCNTs:一种高效的双功能电解水催化剂[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60446-9
引用本文: 张旭鹏, 展俊岭, 王莹, 刘群, 张钰, 王嘉博, 陈黎. Ni, Co诱导合成嵌有高分散NiCoP纳米粒子的NCNTs:一种高效的双功能电解水催化剂[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60446-9
ZHANG Xupeng, ZHAN Junling, WANG Ying, LIU Qun, ZHANG Yu, WANG Jiabo, CHEN Li. Refined Ni, Co-Induced Synthesis of NiCoP Nanoparticles Uniformly Embedded in NCNTs: A Robust Dual-Functional Electrocatalyst for Water Splitting[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60446-9
Citation: ZHANG Xupeng, ZHAN Junling, WANG Ying, LIU Qun, ZHANG Yu, WANG Jiabo, CHEN Li. Refined Ni, Co-Induced Synthesis of NiCoP Nanoparticles Uniformly Embedded in NCNTs: A Robust Dual-Functional Electrocatalyst for Water Splitting[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60446-9

Ni, Co诱导合成嵌有高分散NiCoP纳米粒子的NCNTs:一种高效的双功能电解水催化剂

doi: 10.1016/S1872-5813(24)60446-9
详细信息
  • 中图分类号: O646.5

Refined Ni, Co-Induced Synthesis of NiCoP Nanoparticles Uniformly Embedded in NCNTs: A Robust Dual-Functional Electrocatalyst for Water Splitting

Funds: This research is supported by Scientific and Technological Research Planning Project of the 13th Five Year Plan of Jilin Provincial Department of Education (JJKH20200237KJ, JJKH20210233KJ), the fund of Jilin Institute of Chemical Technology (2020 No. 22, 2021 No. 20, 2021 No. 48), Jilin Scientific and Technological Development Program, the Central Guide Local Scientific and Technological Development Fund, Jilin Province Natural Science Fund (YDZJ202201ZYTS405).
More Information
  • 摘要: 通过一步磷化碳化直接合成了Ni、Co诱导的高度分散的NiCoP纳米颗粒嵌入氮掺杂碳纳米管(NiCo/NiCoP-NCNTs)。NiCo/NiCoP-NCNTs作为水分解的双功能电催化剂,在0.5 M H2SO4和1 M KOH溶液中分别仅需206 mV的HER过电位和360 mV的OER过电位。NiCo/NiCoP-NCNTs在10 mA·cm−2的电流密度下表现出稳定的1.68 V电池电压,在48小时仅有10%的电流密度下降,表现出卓越的稳定性。催化活性的增强归因于NiCoP纳米颗粒的整合以及NCNTs和NiCo合金之间的协同作用。此外,改善的电催化活性与增加的电化学活性表面积和降低的电子传递电阻有关。总体而言,NiCo/NiCoP-NCNTs在高效水电解应用中展现出显著的性能。
  • 1  Synthesis diagram of NiCo/NiCoP-NCNTs

    Figure  1  (a), (b) SEM images of NiCo/NiCoP-NCNTs catalyst. (c), (d) SEM images of NGL material

    Figure  2  HRTEM images of (a)−(c) NiCoP-NCNTs and (d)−(e) NGL, (f) SAED, (g)−(n) EDS and elements mapping results of NiCoP-NCNTs samples

    Figure  3  (a) XRD of NiCo/NiCoP-NCNTs and NGL,(b) nitrogen adsorption-desorption curves

    Figure  4  XPS spectra of NiCo/NiCoP-NCNTs and NGL, (a) survey, (b) C 1s, (c) N 1s, (d) P 2p, (e) Ni 2p,(f) Co 2p high resolution spectra

    Figure  5  (a), (b) LSV and Tafel slopes of HER; (c) CV of NiCo/NiCoP-NCNTs; (d), (e), (f) Cdl, EIS and stability test of NiCo/NiCoP-NCNTs and NGL. All the electrolytes are 0.5 M H2SO4

    Figure  6  (a), (b) LSV and Tafel slopes of OER. (c) CV of NiCo/NiCoP-NCNTs. (d), (e), (f) Cdl, EIS, stability test of NiCo/NiCoP-NCNTs and NGL. All the electrolytes are 1 M KOH

    Figure  7  (a)−(b) Mass normalized LSV polarization curve; (c)−(d) TOF curves of NiCo/NiCoP-NCNTs

    Table  1  Electrochemical performance of bifunctional catalysts HER and OER

    Catalysts ηHER/V ηOER/V Ecell/V Reference
    NiCo/NiCoP-NCNTs 206 360 1.68 This work
    Ni2P-NCNTs 260 410 1.94 This work
    CoP-NCNTs 225 490 1.89 This work
    NiCoP NWAs/NF 197 370 1.64@20 [31]
    NiCo2N/NF 180 290 1.70 [32]
    Ni@NC-800 205 280 1.60 [33]
    Ni-Fe-P-350 182 271 1.68 [34]
    NiFe-NC 197 271 1.67 [35]
    Co/PNC 298 370 1.64 [36]
    下载: 导出CSV
  • [1] GAO J X, TIAN W J, ZHANG H Y. Progress of Nb-containing catalysts for carbon dioxide reduction: a minireview[J]. Tungsten,2022,4(4):284−295.
    [2] JIAO Y, ZHENG Y, JARONIEC M, et al. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions[J]. Chem Soc Rev,2015,44(8):2060−2086.
    [3] HUO W Y, WANG S Q, ZHU W H, et al. Recent progress on high-entropy materials for electrocatalytic water splitting applications[J]. Tungsten,2021,3(2):161−180.
    [4] WANG J, ZHANG J, ZHANG P, et al. Uniformly dispersed NiO/FeNi3 alloy nanoparticles embedded in N-doped porous carbon as electrocatalysts for enhanced oxygen evolution reaction[J]. J Alloys Compd, 2023, 968.
    [5] ZHANG T, DU J, XI P, et al. Hybrids of Cobalt/Iron Phosphides Derived from Bimetal-Organic Frameworks as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction[J]. ACS Applied Materials & Interfaces,2016,9(1):362−370.
    [6] LIU Y, WANG B, SRINIVAS K, et al. CNT-interconnected iron-doped NiP2/Ni2P heterostructural nanoflowers as high-efficiency electrocatalyst for oxygen evolution reaction[J]. Int J Hydrogen Energy,2022,47(26):12903−12913.
    [7] WANG J, FU Y, ZHANG P, et al. Designing N-doped graphene-like supported highly dispersed bimetallic NiCoP NPs as an efficient electrocatalyst for water oxidation[J]. Dalton Transactions,2023,52(37):13079−13088.
    [8] TANG T, WANG Z, GUAN J. A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction[J]. Chinese Journal of Catalysis,2022,43(3):636−678. doi: 10.1016/S1872-2067(21)63945-1
    [9] LIU J, NING G, SHI K, et al. N-doped hollow porous carbon spheres@Co Cu Fe alloy nanospheres as novel non-precious metal electrocatalysts for HER and OER[J]. Int J Hydrogen Energy,2022,47(9):5947−5960.
    [10] WANG Z, WEI C, ZHU X, et al. A hierarchical carbon nanotube forest supported metal phosphide electrode for efficient overall water splitting[J]. Journal of Materials Chemistry A,2021,9(2):1150−1158.
    [11] JANG D, LEE S, KWON N. H, et al. Preparation of carbon nitride nanotubes with P-doping and their photocatalytic properties for hydrogen evolution[J]. Carbon,2023,208:290−302.
    [12] CHEN L, LIU Z, GUO Z, et al. Regulation of intrinsic physicochemical properties of metal oxide nanomaterials for energy conversion and environmental detection applications[J]. Journal of Materials Chemistry A,2020,8(34):17326−17359.
    [13] YU H, LI J, GAO G, et al. Metal-organic frameworks derived carbon-incorporated cobalt/dicobalt phosphide microspheres as Mott–Schottky electrocatalyst for efficient and stable hydrogen evolution reaction in wide-pH environment[J]. J Colloid Interface Sci,2020,565:513−522.
    [14] MONDAL S, DUTTA S, MAL S, et al. Lattice mismatch guided nickel-indium heterogeneous alloy electrocatalysts for promoting the alkaline hydrogen evolution[J]. Angew Chem Int Ed Engl, 2023, 10.1002/anie. 202301269: e202301269.
    [15] WANG Z, ZHANG S, LV X, et al. Electrocatalytic hydrogen evolution on iron-cobalt nanoparticles encapsulated in nitrogenated carbon nanotube[J]. Int J Hydrogen Energy,2019,44(31):16478−16486.
    [16] TESSONNIER J P, SU D S. Recent progress on the growth mechanism of carbon nanotubes: A review[J]. ChemSusChem,2011,4(7):824−847. doi: 10.1002/cssc.201100175
    [17] WANG J, CHEN W, WANG T, et al. A strategy for highly dispersed Mo2C/MoN hybrid nitrogen-doped graphene via ion-exchange resin synthesis for efficient electrocatalytic hydrogen reduction[J]. Nano Research,2018,11(9):4535−4548.
    [18] LOUCHEV O. A, SATO Y. and KANDA H. Growth mechanism of carbon nanotube forests by chemical vapor deposition[J]. Appl Phys Lett,2002,80(15):2752−2754.
    [19] WANG J, ZHANG J, LIU Z, et al. Convenient synthesis of nico alloy nanoparticles encapsulated by N-Doped porous carbon for the oxygen evolution reaction[J]. ACS Applied Nano Materials,2023,6(21):19858−19866.
    [20] PAN Y, CHEN Y, LIN Y, et al. Cobalt nickel phosphide nanoparticles decorated carbon nanotubes as advanced hybrid catalysts for hydrogen evolution[J]. Journal of Materials Chemistry A,2016,4(38):14675−14686.
    [21] MATSOSO B. J, RANGANATHAN K, MUTUMA B. K, et al. Time-dependent evolution of the nitrogen configurations in N-doped graphene films[J]. RSC Advances,2016,6(108):106914−106920.
    [22] ZHOU Y, XU X, SHAN B, et al. Tuning and understanding the supercapacitance of heteroatom-doped graphene[J]. Energy Storage Materials,2015,1:103−111.
    [23] GAYATHRI S, ARUNKUMAR P. and HAN J. H. Scanty graphene-driven phase control and heteroatom functionalization of ZIF-67-derived CoP-draped N-doped carbon/graphene as a hybrid electrode for high-performance asymmetric supercapacitor[J]. J Colloid Interface Sci, 2021, 582(Pt B): 1136-1148.
    [24] GAYATHRI S, ARUNKUMAR P, SAHA D, et al. Composition engineering of ZIF-derived cobalt phosphide/cobalt monoxide heterostructures for high-performance asymmetric supercapacitors[J]. J Colloid Interface Sci,2021,588:557−570.
    [25] YAN G, TAN H, WANG Y, et al. Amorphous quaternary alloy phosphide hierarchical nanoarrays with pagoda-like structure grown on Ni foam as pH-universal electrocatalyst for hydrogen evolution reaction[J]. Appl Surf Sci,2019,489:519−527.
    [26] FAN H, YU H, ZHANG Y, et al. Fe-Doped Ni3C nanodots in N-Doped carbon nanosheets for efficient hydrogen-evolution and oxygen-evolution electrocatalysis[J]. Angew Chem Int Ed,2017,56(41):12566−12570.
    [27] SUGITA Y. , MIYAKE T. and MOTOME Y. Electronic band structure of 4d and 5d transition metal trichalcogenides[J]. Physica B:Condensed Matter,2018,536:48−50.
    [28] ZHANG R, WANG X, YU S, et al. Ternary NiCo(2) P(x) Nanowires as ph-universal electrocatalysts for highly efficient hydrogen evolution reaction[J]. Adv Mater, 2017, 29 (9):
    [29] SINGH S. K, KUMAR D, DHAVALE V. M, et al. strategic preparation of efficient and durable nico alloy supported N-Doped porous graphene as an oxygen evolution electrocatalyst: A theoretical and experimental investigation[J]. Advanced Materials Interfaces, 2016, 3 (20):
    [30] DU C, YANG L, YANG F, et al. Nest-like nicop for highly efficient overall water splitting[J]. ACS Catalysis,2017,7(6):4131−4137.
    [31] LI J, WEI G, ZHU Y, et al. Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting[J]. Journal of Materials Chemistry A,2017,5(28):14828−14837.
    [32] WANG Y, ZHANG B, PAN W, et al. 3 D porous nickel-cobalt nitrides supported on nickel foam as efficient electrocatalysts for overall water splitting[J]. ChemSusChem,2017,10(21):4170−4177.
    [33] XU Y, TU W, ZHANG B, et al. Nickel nanoparticles encapsulated in few-layer nitrogen-doped graphene derived from metal-organic frameworks as efficient bifunctional electrocatalysts for overall water splitting[J]. Adv Mater, 2017, 29 (11):
    [34] XUAN C, WANG J, XIA W, et al. Porous structured Ni-Fe-P nanocubes derived from a prussian blue analogue as an electrocatalyst for efficient overall water splitting[J]. ACS Appl Mater Interfaces,2017,9(31):26134−26142.
    [35] JAYARAMULU K, MASA J, TOMANEC O, et al. Nanoporous nitrogen-doped graphene oxide/nickel sulfide composite sheets derived from a metal-organic framework as an efficient electrocatalyst for hydrogen and oxygen evolution[J]. Advanced Functional Materials, 2017, 27 (33):
    [36] LI X, NIU Z, JIANG J, et al. Cobalt nanoparticles embedded in porous N-rich carbon as an efficient bifunctional electrocatalyst for water splitting[J]. Journal of Materials Chemistry A,2016,4(9):3204−3209.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  7
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-29
  • 修回日期:  2024-01-31
  • 录用日期:  2024-03-06
  • 网络出版日期:  2024-04-13

目录

    /

    返回文章
    返回