留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低阶煤与生物质混合低温共热解特性分析及对产物组成的影响

王俊丽 赵强 郝晓刚 黄伟 赵建国

王俊丽, 赵强, 郝晓刚, 黄伟, 赵建国. 低阶煤与生物质混合低温共热解特性分析及对产物组成的影响[J]. 燃料化学学报(中英文), 2021, 49(1): 37-46. doi: 10.19906/j.cnki.JFCT.2021003
引用本文: 王俊丽, 赵强, 郝晓刚, 黄伟, 赵建国. 低阶煤与生物质混合低温共热解特性分析及对产物组成的影响[J]. 燃料化学学报(中英文), 2021, 49(1): 37-46. doi: 10.19906/j.cnki.JFCT.2021003
WANG Jun-li, ZHAO Qiang, HAO Xiao-gang, HUANG Wei, ZHAO Jian-guo. Low temperature co-pyrolysis of low rank coal with biomass and its influence on pyrolysis-derived products[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 37-46. doi: 10.19906/j.cnki.JFCT.2021003
Citation: WANG Jun-li, ZHAO Qiang, HAO Xiao-gang, HUANG Wei, ZHAO Jian-guo. Low temperature co-pyrolysis of low rank coal with biomass and its influence on pyrolysis-derived products[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 37-46. doi: 10.19906/j.cnki.JFCT.2021003

低阶煤与生物质混合低温共热解特性分析及对产物组成的影响

doi: 10.19906/j.cnki.JFCT.2021003
基金项目: 国家自然科学基金青年科学基金(21908135),山西省面上青年基金(201901D211435),山西省留学回国人员科技活动择优资助项目(2019-20)和山西省高等学校科技创新项目(201802096)资助
详细信息
    通讯作者:

    E-mail: wangjunlitylg@126.com

    xghao@tyut.edu.cn

    jgzhaoshi@163.com

  • 中图分类号: TQ536

Low temperature co-pyrolysis of low rank coal with biomass and its influence on pyrolysis-derived products

Funds: The project was supported by the National Natural Science Foundation of China (21908135), Shanxi Province Science Foundation for Youths (201901D211435), Shanxi Province Foundation for Returness (2019-20) and Science and Technology Innovation Project for Colleges and Universities in Shanxi Province (201802096)
More Information
  • 摘要: 通过非等温热重实验和固定床实验对两种低阶煤(内蒙兴和煤、小龙潭煤)和三种比较常见的生物质(秸秆、向日葵杆、苹果树枝)的低温共热解特性进行了研究。结果表明,煤与生物质共热解是否存在协同效应与生物质种类及混合比例密切相关。对于内蒙兴和煤,秸秆和向日葵杆的加入对于共热解过程影响不显著,与苹果树枝共热解效果明显大于前两种生物质,且内蒙兴和煤与苹果树枝混合比例为2∶1时,共热解协同效果最为明显。通过固定床实验对共热解产物的研究进一步证明了苹果树枝与内蒙兴和煤共热解时协同效应的存在。焦油组分分析结果表明,焦油中含氧化合物组分含量升高,烃类含量降低,即共热解提高了焦油产率,但不能改善焦油品质。
  • 图  1  煤和/或生物质热解固定床装置示意图

    Figure  1  The lab equipment used for coal/biomass pyrolysis

    图  2  110−900 °C生物质和煤单独热解时TG-DTG曲线

    Figure  2  TG and DTG curves of samples at temperature range of 110−900 °C

    图  3  混合样品的热重曲线:((a),(b)和(c))内蒙兴和煤与不同生物质以不同比例掺杂;((d),(e)和(f))小龙潭煤与不同生物质以不同比例掺杂

    Figure  3  TG curves of mixed samples: ((a),(b) and (c)) NMXH with different biomasses; ((d),(e) and (f)) XLT with different biomasses

    图  4  不同温度下内蒙兴和煤热解

    Figure  4  Results of NMXH coal pyrolysis at different temperatures

    (a): product yield; (b): components in pyrolysis gas; (c) and (d): components in pyrolysis tar of coal pyrolysis

    图  5  内蒙兴和煤与苹果树枝共热解产物分布实验值与理论计算值对比图

    Figure  5  Comparation between experimental results and theoretical calculation values of the product distribution

    图  6  内蒙兴和煤与苹果树枝共热解气体组成实验值与理论计算值对比图

    Figure  6  Comparation between experimental results and theoretical calculation values of gas composition

    图  7  热解焦油组分分布(a)NMXH和PGSZ单独热解;(b)NMXH和PGSZ按不同比例混合计算值与实际值对比

    Figure  7  Component distribution of pyrolysis tar (a) coal and PGSZ; (b) comparation between experimental results and theoretical calculation values of tar composition at different molar ratios of NMXH to PGSZ

    表  1  实验使用三种生物质的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of the biomass samples

    Proximate analysis w/%Ultimate analysis w/%
    MadAadVadFCadCadHadOadNadSad
    Straw 6.71 14.36 63.48 15.45 38.9 5.49 37.49 0.56 0.11
    Sunflower 6.77 0.83 74.79 17.61 47.54 6.06 42.27 0.05 0.03
    Apple tree branches 6.20 1.13 78.59 14.08 45.99 6.33 44.91 0.11 0.00
    ad: air-dried basis
    下载: 导出CSV

    表  2  实验使用煤样的工业分析、元素分析和灰成分分析

    Table  2  Proximate, ultimate and ash content analyses of the coal samples

    Proximate analysis w/%Ultimate analysis w/% b
    MadaAdbVdafcFCdCdHdOdNdSd
    NMXH11.4311.9046.5347.1060.914.0118.110.914.15
    XLT11.1610.5751.2843.5760.994.2821.431.631.10
    Ash composition analysis w/%
    NMXHXLTNMXHXLTNMXHXLT
    SiO221.7519.43MgO3.833.93K2O0.940.58
    Al2O315.6010.53TiO20.370.90Na2O0.520.04
    CaO14.5431.49SO326.6018.74Mn3O4
    Fe2O315.629.40P2O50.600.28MnO20.132
    a ad: air-dried basis; b d: dry basis; c daf: dry ash-free basis
    下载: 导出CSV

    表  3  实验原料最大失重率相关温度

    Table  3  Temperatures of maxmiun loss rate in various material pyrolysis

    SampleNMXHXLTStrawSunflowerApple tree branches
    Temperature of maximum weight loss ratio tmax/℃415.00407.20321.46360.53361.27
    Final temperature of rapid weight loss stage tf/℃607.40572.26363.77380.82380.14
    下载: 导出CSV
  • [1] 陈吟颖. 生物质与煤共热解试验研究[D]. 保定: 华北电力大学, 2007.

    CHEN Ying-ying. Experimental study on co-pyrolysis of biomass and coal[D]. Baoding: North China Electric Power University, 2007.
    [2] KUPPENS T, CORNELISSEN T, CARLEER R, YPERMAN J, SCHREURS S, JANS M, THEWYS T. Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams[J]. J Environ Manage,2010,91(12):2736−2747. doi: 10.1016/j.jenvman.2010.07.022
    [3] 程丹琰, 雍其润, 龚本根, 赵永椿, 张军营. 煤和生物质化学链气化中铜基载氧体与灰分的碳热反应研究[J]. 燃料化学学报,2020,48(1):18−27.

    CHENG Dan-yan, YONG Qi-run, GONG Ben-gen, ZHAO Yong-chun, ZHANG Jun-ying. Carbothermal interaction between Cu-based oxygen carrier and ash minerals in the chemical-looping gasification of coal and biomass[J]. J Fuel Chem Technol,2020,48(1):18−27.
    [4] 李晓明, 张红, 刘梦杰, 智丽飞, 白进, 白宗庆, 李文. 采用焦分离方法研究共热解时煤与生物质的相互作用及对焦结构和CO2气化反应性的影响[J]. 燃料化学学报,2020,48(8):897−907. doi: 10.1016/S1872-5813(20)30062-1

    LI Xiao-ming, ZHANG Hong, LIU Meng-jie, ZHI Li-fei, BAI Jin, BAI Zong-qing, LI Wen. Investigation of coal-biomass interaction during co-pyrolysis by char separation and its effect on coal char structure and gasification reactivity with CO2[J]. J Fuel Chem Technol,2020,48(8):897−907. doi: 10.1016/S1872-5813(20)30062-1
    [5] FERMOSO J, ARIAS B, PLAZA M G, PEVIDA C, RUBIERA F, PIS J J, GARCÍA-PEÑA F, CASERO P. High-pressure co-gasification of coal with biomass and petroleum coke[J]. Fuel Process Technol,2009,90(7):926−932.
    [6] NIKKHAH K, BAKHSHI N N, MACDONALD D G. Co-pyrolysis of various biomass materials and coals in a quartz semi-batch reactor[J]. Energy Bio Wastes,1993,16:857−857.
    [7] 周仕学, 聂西文, 王荣春, 刘泽常. 高硫强粘结性煤与生物质共热解的研究[J]. 燃料化学学报,2000,28(4):294−297. doi: 10.3969/j.issn.0253-2409.2000.04.002

    ZHOU Shi-xue, NIE Xi-wen, WANG Rong-chun, LIU Ze-chang. Study on co-pyrolysis of high sulfur and strongly caking coal with biomass[J]. J Fuel Chem Technol,2000,28(4):294−297. doi: 10.3969/j.issn.0253-2409.2000.04.002
    [8] 张丽. 落下床反应器中煤与生物质共热解研究[D]. 大连: 大连理工大学, 2006.

    ZHANG Li. Research on co-pyrolysis of biomass and coal in a free fall reactor[D]. Dalian: Dalian University of Technology, 2006.
    [9] 李世光, 徐绍平. 煤与生物质的共热解[J]. 煤炭转化,2002,25(1):7−12. doi: 10.3969/j.issn.1004-4248.2002.01.002

    LI Shi-guang, XU Shao-ping. Copyrolysis of coal and biomass[J]. Coal Convers,2002,25(1):7−12. doi: 10.3969/j.issn.1004-4248.2002.01.002
    [10] 李文, 李保庆, 孙成功, 尉迟唯, 曹变英. 生物质热解, 加氢热解及其与煤共热解的热重研究[J]. 燃料化学学报,1996,24(4):341−347.

    LI Wen, LI Bao-qing, SUN Cheng-gong, YU Chi-wei, CAO Bian-ying. Study on pyrolysis and hydropyrolysis of biomasss and copyrolysis between biomass and coal[J]. J Fuel Chem Technol,1996,24(4):341−347.
    [11] STORM C, RUDIGER H, SPLIETHOFF H, HEIN K. Co-pyrolysis of coal/biomass and coal/sewage sludge mixtures[J]. J Eng Gas Turb Power,1999,121(1):55−63. doi: 10.1115/1.2816312
    [12] 王俊丽. 低阶煤热解动力学特性及与生物质共热解, 热解产物深加工试验研究[D]. 太原: 太原理工大学, 2017.

    WANG Jun-li. Kinetics of low rank coal pyrolysis and co-pyrolysis with biomass and deep processing of pyrolysis-derived products[D]. Taiyuan: Taiyuan University of Technology, 2017.
    [13] 谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002.

    XIE Ke-chang. Coal Structure and Its Reactivity[M]. Beijing: Science Press, 2002.
    [14] YANG H, YAN R, CHEN H, LEE D H, ZHENG C. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel,2007,86(12):1781−1788.
    [15] 赵超超, 杜官本. 操作条件对生物质热解的影响研究[J]. 林业机械与木工设备,2009,37(5):7−10. doi: 10.3969/j.issn.2095-2953.2009.05.002

    ZHAO Chao-chao, DU Guan-ben. Study on the effect of operating conditions on biomass pyrolysis[J]. For Mach Woodwork Equip,2009,37(5):7−10. doi: 10.3969/j.issn.2095-2953.2009.05.002
    [16] 宋禹瑶. 煤与生物质固定床共热解特性实验研究[D]. 鞍山: 辽宁科技大学, 2015.

    SONG Yu-yao. Experimental research on the characteristics of coal and biomass pyrolysis in the fix-bed reactor[D]. Anshan: University of Science and Technology Liaoning, 2015.
    [17] 胡海涛, 李允超, 王贤华, 张帅, 杨海平, 陈汉平. 生物质预处理技术及其对热解产物的影响综述[J]. 生物质化学工程,2014,48(1):44−50. doi: 10.3969/j.issn.1673-5854.2014.01.008

    HU Hai-tao, LI Yun-chao, WANG Xian-hua, ZHANG Shuai, YANG Hai-ping, CHEN Han-ping. A review of biomass pretreatment technologies and their influence on pyrolysis product[J]. Biomass Chem Eng,2014,48(1):44−50. doi: 10.3969/j.issn.1673-5854.2014.01.008
    [18] 管仁贵, 李文, 李保庆. 钙基添加剂在大同煤热解中的作用[J]. 中国矿业大学学报,2002,31(4):396−401. doi: 10.3321/j.issn:1000-1964.2002.04.016

    GUAN Ren-gui, LI Wen, LI Bao-qing. Effects of Ca-based additives on pyrolysis of Datong coal[J]. J China Univ Min Technol,2002,31(4):396−401. doi: 10.3321/j.issn:1000-1964.2002.04.016
    [19] LIU Z, GUO X, SHI L, HE W, WU J, LIU Q, LIU J. Reaction of volatiles-A crucial step in pyrolysis of coals[J]. Fuel,2015,154:361−369. doi: 10.1016/j.fuel.2015.04.006
    [20] LU Q, ZHANG Z F, DONG C Q, ZHU X. Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: An analytical Py-GC/MS study[J]. Energies,2010,3(11):1805−1820. doi: 10.3390/en3111805
    [21] LU Q, ZHANG Y, TANG Z, LI W, ZHU X. Catalytic upgrading of biomass fast pyrolysis vapors with titania and zirconia/titania based catalysts[J]. Fuel,2010,89(8):2096−2103. doi: 10.1016/j.fuel.2010.02.030
    [22] PATTIYA A, TITILOYE J O, BRIDGWATER A V. Fast pyrolysis of cassava rhizome in the presence of catalysts[J]. J Anal Appl Pyrolysis,2008,81(1):72−79. doi: 10.1016/j.jaap.2007.09.002
    [23] SONG Y, TAHMASEBI A, YU J. Co-pyrolysis of pine sawdust and lignite in a thermogravimetric analyzer and a fixed-bed reactor[J]. Bioresour Technol,2014,174:204−211. doi: 10.1016/j.biortech.2014.10.027
    [24] PARK D K, KIM S D, LEE S H, LEE J G. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor[J]. Bioresour Technol,2010,101(15):6151−6156. doi: 10.1016/j.biortech.2010.02.087
    [25] OASMAA A, CZERNIK S. Fuel oil quality of biomass pyrolysis oils state of the art for the end users[J]. Energy Fuels,1999,13(4):914−921. doi: 10.1021/ef980272b
    [26] SCHOLZE B, MEIER D. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY-GC/MS, FTIR, and functional groups[J]. J Anal Appl Pyrolysis,2001,60(1):41−54. doi: 10.1016/S0165-2370(00)00110-8
    [27] LU Q, LI W, ZHANG D, ZHU F. Analytical pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS) of sawdust with Al/SBA-15 catalysts[J]. J Anal Appl Pyrolysis,2009,84(2):131−138. doi: 10.1016/j.jaap.2009.01.002
    [28] VAN DE VELDEN M, BAEYENS J, BREMS A, JANSSENS B, DEWIL R. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction[J]. Renew Energy,2010,35(1):232−242. doi: 10.1016/j.renene.2009.04.019
    [29] CARLSON T R, CHENG Y T, JAE J, HUBER G W. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust[J]. Energy Environ Sci,2011,4(1):145−161. doi: 10.1039/C0EE00341G
    [30] MOCHIZUKI T, CHEN S Y, TOBA M, YOSHIMURA Y. Pyrolyzer-GC/MS system-based analysis of the effects of zeolite catalysts on the fast pyrolysis of Jatropha husk[J]. Appl Catal A: Gen,2013,456:174−181. doi: 10.1016/j.apcata.2013.02.022
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  3625
  • HTML全文浏览量:  144
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-09
  • 修回日期:  2020-10-16
  • 刊出日期:  2021-01-29

目录

    /

    返回文章
    返回