留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过滤介质对低阶煤热解焦油气反应行为的影响研究

李挺 王倩 申岩峰 靳鑫 孔娇 王美君 常丽萍

李挺, 王倩, 申岩峰, 靳鑫, 孔娇, 王美君, 常丽萍. 过滤介质对低阶煤热解焦油气反应行为的影响研究[J]. 燃料化学学报(中英文), 2021, 49(3): 257-264. doi: 10.19906/j.cnki.JFCT.2021009
引用本文: 李挺, 王倩, 申岩峰, 靳鑫, 孔娇, 王美君, 常丽萍. 过滤介质对低阶煤热解焦油气反应行为的影响研究[J]. 燃料化学学报(中英文), 2021, 49(3): 257-264. doi: 10.19906/j.cnki.JFCT.2021009
LI Ting, WANG Qian, SHEN Yan-feng, JIN Xin, KONG Jiao, WANG Mei-jun, CHANG Li-ping. Effect of filter media on gaseous tar reaction during low-rank coal pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 257-264. doi: 10.19906/j.cnki.JFCT.2021009
Citation: LI Ting, WANG Qian, SHEN Yan-feng, JIN Xin, KONG Jiao, WANG Mei-jun, CHANG Li-ping. Effect of filter media on gaseous tar reaction during low-rank coal pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 257-264. doi: 10.19906/j.cnki.JFCT.2021009

过滤介质对低阶煤热解焦油气反应行为的影响研究

doi: 10.19906/j.cnki.JFCT.2021009
基金项目: 国家重点研发计划(2018YFB0605000)和山西省高等学校科技成果转化培育项目(TSTAP)资助
详细信息
    通讯作者:

    Tel: 0351-6010482, E-mail: wangmeijun@tyut.edu.cn

    lpchang@tyut.edu.cn

  • 中图分类号: TQ523.3

Effect of filter media on gaseous tar reaction during low-rank coal pyrolysis

Funds: The project was supported by National Key Research and Development Plan Project of China (2018YFB0605000) and Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi (TSTAP)
  • 摘要: 低阶煤热解焦油气通过颗粒床过滤器除尘时,过滤介质在一定程度上会影响热解焦油气的反应行为。本研究采用下行床热解反应器考察了陶瓷球(CB)、膨胀珍珠岩(EP)、活性炭(AC)和γ-Al2O3四种颗粒床过滤介质对淖毛湖长焰煤热解焦油气反应性的影响,结果表明,热解产物的分布、组成及其积炭行为受过滤介质种类的影响显著。CB、EP相对惰性,因延长了焦油气的停留时间,加剧了裂解和缩聚反应,焦油产率减小、沥青含量升高,热解气、热解水及积炭产率增加, 但焦油积炭量和化学组成没有明显变化;AC、γ-Al2O3具有较强的催化裂解活性,可明显降低焦油沥青含量和积炭量,但会使焦油向热解气、热解水及积炭转化,导致焦油产率显著下降。同时,AC、γ-Al2O3可裂解焦油气中部分含氧化合物和含氮、硫杂环化合物,使其转化为芳香烃。
  • 图  1  实验装置示意图

    Figure  1  Diagram of experimental equipment

    图  2  AC的拉曼光谱谱图

    Figure  2  Raman spectrum of AC

    图  3  γ-Al2O3的NH3-TPD谱图

    Figure  3  NH3-TPD profile of γ-Al2O3

    图  4  不同过滤介质下热解产物(a)和积炭(b)分布

    Figure  4  Distribution of pyrolysis products (a) and cokes (b) under different filter media

    图  5  不同过滤介质下焦油馏分分布(a)和产率(b)

    Figure  5  Distribution (a) and yields (b) of tar fraction under different filter media

    图  6  不同过滤介质下焦油(a)及其芳香烃(b)化学组成

    Figure  6  Chemical compositions of tar (a) and its aromatics (b) under different filter media

    图  7  不同过滤介质下热解气产率

    Figure  7  Yields of pyrolysis gases under different filter media

    表  1  煤样的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of coal sample

    Proximate analysis w/%Ultimate analysis wdaf/%
    MadAdVdafCHNSO*
    19.505.8050.1274.355.130.720.3119.49
    note: ad: air dry; d: dry; daf: dry and ash free; *: by difference
    下载: 导出CSV

    表  2  过滤介质的孔隙结构参数

    Table  2  Pore structure parameters of different filter media

    SampleSBET/(m2·g−1)Smicro/(m2·g−1)Sexter/(m2·g−1)vtotal/(mm3·g−1)vmicro/(mm3·g−1)vmeso/(mm3·g−1)d avera/nm
    CB0.040.030.018.53
    EP0.920.530.392.550.212.3411.11
    AC1221.24469.38751.86577.29192.87384.422.25
    γ-Al2O3175.456.87168.58492.960.99491.9711.77
    下载: 导出CSV
  • [1] 丁肖肖, 李洪娟, 王亚涛. 褐煤低温热解分级利用现状分析及展望[J]. 洁净煤技术,2019,25(5):1−7.

    DING Xiao-xiao, LI Hong-juan, WANG Ya-tao. Present situation analysis and prospect of classification and utilization of lignite pyrolysis at low temperature[J]. Clean Coal Technol,2019,25(5):1−7.
    [2] 白效言, 张飏, 王岩, 王之正, 周琦. 低阶煤热解关键技术问题分析及研究进展[J]. 煤炭科学技术,2018,46(1):192−198.

    BAI Xiao-yan, ZHANG Yang, WANG Yan, WANG Zhi-zheng, ZHOU Qi. Analysis of key issues and research progress in pyrolysis of low rank coal[J]. Coal Sci Technol,2018,46(1):192−198.
    [3] 颜深, 孙国刚, 孙占朋, 韩笑, 黄雷, 赵斐. 颗粒床过滤除尘技术研究进展[J]. 化工进展,2017,36(9):3152−3163.

    YAN Shen, SUN Guo-gang, SUN Zhan-peng, HAN Xiao, HUANG Lei, ZHAO Fei. Advances in research on granular bed filter for dust removal[J]. Chem Eng Prog,2017,36(9):3152−3163.
    [4] 梁鹏, 王志锋, 董众兵, 毕继诚. 炉前煤低温干馏工艺中的挥发分除尘[J]. 燃料化学学报,2006,34(1):25−29.

    LIANG Peng, WANG Zhi-feng, DONG Zhong-bing, BI Ji-cheng. Hot dust removal in the process of low temperature coal pyrolysis[J]. J Fuel Chem Technol,2006,34(1):25−29.
    [5] 张生军, 郑化安, 陈静升, 樊英杰, 李学强. 煤热解工艺中挥发分除尘技术的现状分析及建议[J]. 洁净煤技术,2014,20(3):79−82.

    ZHANG Sheng-jun, ZHENG Hua-an, CHEN Jing-sheng, FAN Ying-jie, LI Xue-qiang. Status analysis and improvement measures of volatile dust removal technology in coal process[J]. Clean Coal Technol,2014,20(3):79−82.
    [6] 王苗, 荣雷, 王毅. 基于半焦为过滤介质的颗粒床过滤器除尘性能分析[J]. 煤炭转化,2019,42(6):41−48.

    WANG Miao, RONG Lei, WANG Yi. Analysis of dust removal performance of granular bed filter based on semi-focal filter medium[J]. Coal Convers,2019,42(6):41−48.
    [7] 张健, 赵创, 王兴云. 颗粒床除尘技术在高温煤气除尘中的工程示范研究[J]. 化肥设计,2018,56(4):5−8.

    ZHANG Jian, ZHAO Chuang, WANG Xing-yun. Project demonstration and research of granular bed dust removal technology in high temperature gas dust removal[J]. Chem Fert Des,2018,56(4):5−8.
    [8] 梁鹏, 曲旋, 毕继诚. 炉前煤低温干馏的工艺研究[J]. 燃料化学学报,2008,36(4):401−405.

    LIANG Peng, QU Xuan, BI Ji-cheng. Low temperature coal pyrolysis by solid heat carrier in a moving bed yrolyzer[J]. J Fuel Chem Technol,2008,36(4):401−405.
    [9] 曲旋, 张荣, 毕继诚, 巩秀魁, 王乃荣. CFB燃烧/煤热解多联供技术的中试初探[J]. 化工进展,2008,27(S):386−390.

    QU Xuan, ZHANG Rong, BI Ji-cheng, GONG Xiu-kui, WANG Nai-long. Pilot test of CFB combustion/coal pyrolysis multi-supply technology[J]. Chem Eng Prog,2008,27(S):386−390.
    [10] 宋文立, 姚建忠, 郝丽芳. 一种颗粒除尘过滤器及除尘过滤方法: 中国, 102716628A [P]. 2012-06-04.

    SONG Wen-li, YAO Jian-zhong, HAO Li-fang. A granular bed filter for dust removal and its filter method: CN, 102716628A [P]. 2012-06-04.
    [11] 王苗, 杜鑫, 王毅. 旋风-颗粒床过滤器两级除尘的分析与优化[J]. 化学工程,2020,48(4):55−59.

    WANG Miao, DU Xin, WANG Yi. Analysis and optimization on two-stage dust removal of cyclone separator-granlllar bed filter[J]. Chem Eng,2020,48(4):55−59.
    [12] LIU Z Y, GUO X J, SHI L, HE W J, WU J F, LIU Q Y, LIU J H. Reaction of volatiles-a crucial step in pyrolysis of coals[J]. Fuel,2015,154:361−369. doi: 10.1016/j.fuel.2015.04.006
    [13] DONG L, HAN S, YU W H, LEI Z P, KANG S G, ZHANG K, YAN J C, LI Z K. Effect of volatile reactions on the yield and quality of tar from pyrolysis of Shenhua bituminous coal[J]. J Anal Appl Pyrolysis,2019,140:321−330. doi: 10.1016/j.jaap.2019.04.009
    [14] ZHOU Q Q, LIU Q Y, SHI L, YAN Y X, WU J F, XIANG C, WANG T, LIU Z Y. Effect of volatiles’ reaction on composition of tars derived from pyrolysis of a lignite and a bituminous coal[J]. Fuel,2019,242:140−148. doi: 10.1016/j.fuel.2019.01.005
    [15] JIN L J, BAI X Y, LI Y, DONG C, LI X. In-situ catalytic upgrading of coal pyrolysis tar on carbon-based catalyst in a fixed-bed reactor[J]. Fuel Process Technol,2016,147:41−46. doi: 10.1016/j.fuproc.2015.12.028
    [16] 孙鸣, 刘永琦, 张丹, 马明明, 么秋香, 贾强, 马晓迅. 基于Py-GC/MS的中低温煤焦油催化裂解研究[J]. 中国矿业大学学报,2019,48(3):647−654.

    SUN Ming, LIU Yong-qi, ZHANG Dan, MA Ming-ming, YAO Qiu-xiang, JIA Qiang, MA Xiao-xun. Catalytic cracking of low temperature coal tar by Py-GC/MS[J]. J China Univ Min Technol,2019,48(3):647−654.
    [17] ZHANG S, CHEN Z D, ZHANG H Y, WANG Y G, XU X Q, CHENG L, ZHANG Y M. The catalytic reforming of tar from pyrolysis and gasification of brown coal: Effects of parental carbon materials on the performance of char catalysts[J]. Fuel Process Technol,2018,174:142−148. doi: 10.1016/j.fuproc.2018.02.022
    [18] 包建国, 龚建议, 杨运泉, 陈卓, 蒋新民. CoMo/γ-Al2O3 催化剂的制备及其加氢脱氧性能[J]. 石油化工,2010,39(1):42−46.

    BAO Jian-guo, GONG Jian-yi, YANG Yun-quan, CHEN Zhuo, JIANG Xin-min. Preparation and hydrodeoxygenation performances of CoMo/γ-Al2O3 catalyst[J]. Petrochem Technol,2010,39(1):42−46.
    [19] 敦启孟, 陈兆辉, 皇甫林, 周杨, 余剑, 高士秋, 刘鸿雁. 温度和停留时间对煤热解挥发分二次反应的影响[J]. 过程工程学报,2018,18(1):140−147.

    DUN Qi-meng, CHEN Zhao-hui, HUANG Fu-lin, ZHOU Yang, YU Jian, GAO Shi-qiu, LIU Hong-yan. Influences of temperature and residence time on secondary reactions of volatiles from coal pyrolysis[J]. Chin J Process Eng,2018,18(1):140−147.
    [20] BALASUNDRAM V, IBRAHIM N, KASMANI R M, ISHA R, HAMID M K A, HASBULLAH H, ALI R R. Catalytic upgrading of sugarcane bagasse pyrolysis vapours over rare earth metal (Ce) loaded HZSM-5: Effect of catalyst to biomass ratio on the organic compounds in pyrolysis oil[J]. Appl Energy,2018,220:787−799. doi: 10.1016/j.apenergy.2018.03.141
    [21] WU J F, LIU QY, WANG R X, HE W J, SHI L, GUO X J, CHEN Z Z, JI L M. Coke formation during during thermal reaction of tar from pyrolysis of a subbituminous coal[J]. Fuel Process Technol,2017,155:68−73. doi: 10.1016/j.fuproc.2016.03.022
    [22] LI S L, ZHANG S P, FENG Z Y, YAN Y J. Coke formation in the catalytic cracking of bio-oil model compounds[J]. Environ Prog Sustai,2015,34(1):1−8. doi: 10.1002/ep.12077
    [23] LIU L L, KUMAR S, WANG Z H, HE Y, CEN K F. Catalytic effect of metal chlorides on coal pyrolysis and gasification part I. Combined TG-FTIR study for coal pyrolysis[J]. Thermochim Acta,2017,655:331−336. doi: 10.1016/j.tca.2017.07.007
    [24] XU W C, TOMITA A. Effect of temperature on the flash pyrolysis of various coals[J]. Fuel,1987,66(5):632−636. doi: 10.1016/0016-2361(87)90271-7
    [25] JIA Y B, HUANG J J, WANG Y. Effects of calcium oxide on the cracking of coal tar in the freeboard of a fluidized bed[J]. Energy Fuels,2004,18(6):1625−1632. doi: 10.1021/ef034077v
    [26] HAN J Z, WANG X D, YUE J R, GAO S Q, XU G W. Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Process Technol,2014,122:98−106. doi: 10.1016/j.fuproc.2014.01.033
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  465
  • HTML全文浏览量:  171
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-25
  • 修回日期:  2020-10-26
  • 网络出版日期:  2021-03-19
  • 刊出日期:  2021-03-19

目录

    /

    返回文章
    返回