留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工业废碱液催化煤焦加压水蒸气气化反应的研究

王会芳 李鹏 祖静茹 李克忠

王会芳, 李鹏, 祖静茹, 李克忠. 工业废碱液催化煤焦加压水蒸气气化反应的研究[J]. 燃料化学学报(中英文), 2021, 49(2): 145-150. doi: 10.19906/j.cnki.JFCT.2021010
引用本文: 王会芳, 李鹏, 祖静茹, 李克忠. 工业废碱液催化煤焦加压水蒸气气化反应的研究[J]. 燃料化学学报(中英文), 2021, 49(2): 145-150. doi: 10.19906/j.cnki.JFCT.2021010
WANG Hui-fang, LI Peng, ZU Jing-ru, LI Ke-zhong. Catalytic effects of industrial waste alkali liquor in pressurized steam gasification of coal char[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 145-150. doi: 10.19906/j.cnki.JFCT.2021010
Citation: WANG Hui-fang, LI Peng, ZU Jing-ru, LI Ke-zhong. Catalytic effects of industrial waste alkali liquor in pressurized steam gasification of coal char[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 145-150. doi: 10.19906/j.cnki.JFCT.2021010

工业废碱液催化煤焦加压水蒸气气化反应的研究

doi: 10.19906/j.cnki.JFCT.2021010
基金项目: 国家科技支撑计划(2009BAA25B00),国家重点基础研究发展规划(973计划,2011CB201305)和国际科技合作专项(2011DFA60610)资助
详细信息
    通讯作者:

    Tel:0316-2595824,E-mail:nyyjy@enn.cn

  • 中图分类号: TQ541

Catalytic effects of industrial waste alkali liquor in pressurized steam gasification of coal char

Funds: The project was supported by National Science and Technology Support Program (2009BAA25B00), The National Basic Research Program of China (973 Program, 2011CB201305) and International Cooperation in Science and Technology Project (2011DFA60610)
More Information
    Corresponding author: Tel:0316-2595824,E-mail:nyyjy@enn.cn
  • 摘要: 为了研究工业废碱液对煤水蒸气反应的催化作用,选取内蒙古王家塔煤(WJT),负载造纸黑液(BL)进行高压水蒸气气化性能评价。分别考察了温度和负载量对催化活性的影响,并与分析纯碳酸钠(SC)催化活性进行对比。固定床小试评价结果表明,700−750 ℃,催化剂活性随负载量增加呈先增大后减小的趋势,BL最佳负载量为3%Na,并且催化活性优于SC催化剂;温度升高,催化活性更显著。采用N2吸附-脱附等温实验考察BL对煤焦比表面积和孔结构的影响,结果表明,随着BL负载量增加到3%,煤焦比表面积和孔容都增加,从而有利于提供更多的气化活性位点,提高煤焦反应活性;随着负载量的进一步增加,催化剂过量造成堆积堵孔,导致催化剂的比表面积和孔容降低,从而降低了气化反应速率。
  • 图  1  加压固定床评价装置流程示意图

    Figure  1  Schematic diagram of pressurized fixed-bed reactor

    1: water pump;2: volume meter;3: pre-heater;4: char hopper;5: reactor;6: electric furnace;7: back pressure regulator;8: separate pot;9: flow meter

    图  2  温度对原煤半焦(RC)和3%Na-BL半焦碳转化率的影响

    Figure  2  Effect of temperature on carbon conversion of coal char with and without BL

    图  3  BL与SC的催化性能对比

    Figure  3  Comparison of catalytic effect of BL with SC

    图  4  催化剂负载量对碳转化率的影响

    Figure  4  Effect of catalyst loading on carbon conversion

    图  5  催化剂负载量对甲烷收率的影响

    Figure  5  Effect of catalyst loading on CH4 yield

    图  6  不同BL负载量煤焦的等温吸附-脱附曲线

    Figure  6  Adsorption-desorption isotherm of chars with different BL loadings

    图  7  不同BL负载量煤焦的孔径分布

    Figure  7  Distribution of pore size of char with different BL loadings

    表  1  王家塔煤的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of WJT coal

    Proximate analysis wd/% Ultimate analysis wd/%
    A V FC C H O N S
    4.77 33.75 61.47 75.34 4.10 14.56 0.87 0.36
    下载: 导出CSV

    表  2  不同负载量BL煤焦的比表面积和孔容分布

    Table  2  Specific surface area and pore volume of char with different BL loadings

    Samples BL% Surface area /(m2·g−1) Pore volume /(cm3·g−1) Average pore diameter /nm
    BET surface t-plot micropore t-plot external total pore volume t-plot micropore
    0 9.7769 0.0816 9.6953 0.025624 −0.000077 10.48366
    2 13.7624 1.8739 11.8885 0.033134 0.000819 9.63037
    3 14.7986 1.1599 13.6387 0.033360 0.000433 9.01696
    5 12.7637 0.3826 12.3811 0.031556 0.000046 9.88931
    下载: 导出CSV
  • [1] 中国煤化工行业年度报告-2019年回顾与未来展望(2020-2024)[R]. 亚化咨询, 2019.

    Annual report of coal chemical industry in China - Review in 2019 and prospect (2020-2024)[R]. ASIACHEM, 2019.
    [2] HIRSCH R L, GALLAGHER J E, LESSARD R R Jr, WESSELHOFT R D. Catalytic coal gasification-an emerging technology[J]. Science,1982,215(4529):121−127. doi: 10.1126/science.215.4529.121
    [3] NAHAS N C. Exxon catalytic coal gasification process: Fundamentals to flowsheets[J]. Fuel,1989,62:239−243.
    [4] MCKEE D W, SPIRO C L, KOSKY P G, LAMBY E J. Catalysis of coal char gasification by alkali metal salts[J]. Fuel,1983,62(2):217−220. doi: 10.1016/0016-2361(83)90202-8
    [5] VERAA M J, BELL A T. Effect of alkali metal catalysts on gasification of coal char[J]. Fuel,1978,57(4):194−200. doi: 10.1016/0016-2361(78)90116-3
    [6] KAPTEIJN F, PEER O, MOULIJN J A. Kinetics of the alkali carbonate catalyzed gasification of carbon: 1. CO2 gasification[J]. Fuel,1986,65(10):1371−1376. doi: 10.1016/0016-2361(86)90107-9
    [7] TROMP P J J, KARSTEN P J A, JENKIN R G, MOULIJN J A. The thermoplasticity of coal and the effect of K2CO3 addition in relation to the reactivity of the char in gasification[J]. Fuel,1986,65(10):1450−1456. doi: 10.1016/0016-2361(86)90122-5
    [8] YUAN X Z, FAN S M, ZHAO L, KIM H T. Investigations of both catalytic steam gasification of indonesian lanna coal and potassium catalyst recovery using K2CO3 as a catalyst[J]. Energy Fuels,2016,30(3):2492−502. doi: 10.1021/acs.energyfuels.5b02536
    [9] YUAN X Z, FAN S M, CHOI S W, KIM H T, LEE K B. Potassium catalyst recovery process and performance evaluation of the recovered catalyst in the K2CO3-catalyzed steam gasification system[J]. Appl Energy,2017,195:850−60. doi: 10.1016/j.apenergy.2017.03.088
    [10] WANG Y W, WANG Z Q, HUANG J J, FANG Y T. Improved catalyst recovery combined with extracting alumina from Na2CO3-catalyzed gasification ash of a high-aluminum coal char[J]. Fuel,2018,234(15):101−109.
    [11] KUANG J P, ZHOU J H, ZHOU Z J, LIU J Z, CEN K F. Catalytic mechanism of sodium compounds in black liquor during gasification of coal black liquor slurry[J]. Energy Convers Manage,2008,49(2):247−256. doi: 10.1016/j.enconman.2007.06.032
    [12] 林驹, 张济宇, 钟雪晴. 纸浆黑液对福建无烟煤水蒸气催化气化的动力学和补偿效应[J]. 化工学报,2009,60(4):905−911. doi: 10.3321/j.issn:0438-1157.2009.04.014

    LIN Ju, ZHANG Ji-yu, ZHONG Xue-qing. Kinetics and compensation effects of steam gasification of Fujian anthracite using black liquor as catalyst[J]. CIESC J,2009,60(4):905−911. doi: 10.3321/j.issn:0438-1157.2009.04.014
    [13] 黄文沂, 张济宇, 林驹. 无烟粉煤催化气化含碱灰渣的煅烧无害化[J]. 燃料化学学报,2001,29(6):537−542. doi: 10.3969/j.issn.0253-2409.2001.06.013

    HUANG Wen-yi, ZHANG Ji-yu, LIN Ju. Harmless treatment of alkali ash-cinders yielded in catalytic gasification for pulverized Fujian anthracite[J]. J Fuel Chem Technol,2001,29(6):537−542. doi: 10.3969/j.issn.0253-2409.2001.06.013
    [14] VALENZUELA-CALAHORRO C, PAN Y G, BERNAITE-GARCIA A, GOMEZ-SERRANO V. Thermogravimetric study of anthracite gasification in CO2 catalyzed by black liquor[J]. Energy Fuels,1994,8(2):348−354. doi: 10.1021/ef00044a009
    [15] ZHAN X L, ZHOU Z J, WANG F C. Catalytic effect of black liquor on the gasification reactivity of petroleum coke[J]. Appl Energy,2010,87(5):1710−1715. doi: 10.1016/j.apenergy.2009.10.027
    [16] 周志杰, 熊杰, 展秀丽, 于广锁. 造纸黑液对石油焦-CO2气化的催化作用及动力学补偿效应[J]. 化工学报,2011,62(4):934−939.

    ZHOU Zhi-jie, XIONG Jie, ZHAN Xiu-li, YU Guang-suo. Catalysis of black liquor for petroleum coke-CO2 gasification and kinetic compensation effect[J]. CIESC J,2011,62(4):934−939.
    [17] WANG J, SAKANISHI K, SAITO I. High-yield hydrogen production by steam gasification of hypercoal (Ash-free coal extract) with potassium carbonate: Comparison with raw coal[J]. Energy Fuels,2005,19:2114−2120. doi: 10.1021/ef040089k
    [18] WANG J, YAO Y H, CAO J Q, JIANG M Q. Enhanced catalysis of K2CO3 for steam gasification of coal char by using Ca(OH)2 in char preparation[J]. Fuel,2010,89(2):310−317. doi: 10.1016/j.fuel.2009.09.001
    [19] ZHANG L X, KUDO S, TSUBOUCHHI N, HAYASHI, J I, OHTSUKA Y, NORINAGA K. Catalytic effects of Na and Ca from inexpensive materials on in-situ steam gasification of char from rapid pyrolysis of low rank coal in a drop-tube reactor[J]. Fuel Process Technol,2013,113:1−7.
    [20] DING L, ZHOU Z J. Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification[J]. Fuel,2015,142:134−144. doi: 10.1016/j.fuel.2014.11.010
    [21] YEBOAHA Y D, XU Y, SHETH A, GODAVARTY A, AGRAWAL P K. Catalytic gasification of coal using eutectic salts: identification of eutectics[J]. Carbon,2003,41(2):203−214. doi: 10.1016/S0008-6223(02)00310-X
    [22] KAPTEIJN F, MOULIJN J A. Methanation of CO over alkali metal-carbon catalysts[J]. Chem Commun,1984,5:278−279.
    [23] MEIJER R, VAN DOORN R, KAPTEIJN F, MOULIJN J A. Methane formation in H2, CO mixtures over carbon-supported potassium carbonate[J]. J Catal,1992,134(2):525−535. doi: 10.1016/0021-9517(92)90339-J
    [24] WANG J, JIANG M Q, YAO Y H, ZHANG Y M, CAO J Q. Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane[J]. Fuel,2009,88(9):1572−1579.
    [25] 陈彦, 张济宇. 福建无烟煤Na2CO3催化气化过程的比表面变化特性[J]. 化工学报,2012,63(8):2443−2452. doi: 10.3969/j.issn.0438-1157.2012.08.016

    CHEN Yan, ZHANG Ji-yu. Variation of specific surface area in catalytic gasification process of Fujian anracite with Na2CO3 catalyst[J]. CIESC J,2012,63(8):2443−2452. doi: 10.3969/j.issn.0438-1157.2012.08.016
    [26] 孟磊, 周敏, 王芬. 煤催化气化催化剂研究进展[J]. 煤气与热力,2010,30(4):B18−B22.

    MENG Lei, ZHOU Min, WANG Fen. Progress of research on catalyst for catalytic gasification of coal[J]. Gas Heat,2010,30(4):B18−B22.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  129
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-28
  • 修回日期:  2020-11-19
  • 刊出日期:  2021-02-08

目录

    /

    返回文章
    返回