留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤系针状焦偏光显微结构的识别及定量分析

李磊 林雄超 刘哲 张玉坤 寇世博 王永刚

李磊, 林雄超, 刘哲, 张玉坤, 寇世博, 王永刚. 煤系针状焦偏光显微结构的识别及定量分析[J]. 燃料化学学报(中英文), 2021, 49(3): 265-273. doi: 10.19906/j.cnki.JFCT.2021011
引用本文: 李磊, 林雄超, 刘哲, 张玉坤, 寇世博, 王永刚. 煤系针状焦偏光显微结构的识别及定量分析[J]. 燃料化学学报(中英文), 2021, 49(3): 265-273. doi: 10.19906/j.cnki.JFCT.2021011
LI Lei, LIN Xiong-chao, LIU Zhe, ZHANG Yu-kun, KOU Shi-bo, WANG Yong-gang. Identification and quantitative analysis of polarized light microstructure of coal-derived needle coke[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 265-273. doi: 10.19906/j.cnki.JFCT.2021011
Citation: LI Lei, LIN Xiong-chao, LIU Zhe, ZHANG Yu-kun, KOU Shi-bo, WANG Yong-gang. Identification and quantitative analysis of polarized light microstructure of coal-derived needle coke[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 265-273. doi: 10.19906/j.cnki.JFCT.2021011

煤系针状焦偏光显微结构的识别及定量分析

doi: 10.19906/j.cnki.JFCT.2021011
基金项目: 国家重点研发计划子课题(2016YFB0600303031),北京市大学生科学研究与创业行动计划项目(201911413103)资助
详细信息
    通讯作者:

    Tel:13683273151,E-mail:linxiongchao@163.com

    wyg1960@126.com

  • 中图分类号: TQ016.1

Identification and quantitative analysis of polarized light microstructure of coal-derived needle coke

Funds: The project was supported by the sub-project of National Key Research and Development Program (2016YFB0600303031) and Beijing University Student Scientific Research and Entrepreneurship Action Plan Project (201911413103)
More Information
  • 摘要: 以精制煤焦油沥青为原料制备针状焦。利用bricc-m煤岩自动测试系统和RICC-Imager图像分析软件,使用打点计数方法,对煤系针状焦偏光显微结构进行定量分析。进一步利用扫描电子显微镜进行针状焦微观结构解析。结果表明,在炭化温度为490 ℃、炭化压力为0.2 MPa、反应时间为6 h条件下制备的生焦,定量分析其广域流线型结构含量为87.8%,显示出较好的光学显微结构。对比传统人工定量分析方法,使用计算机打点计数方法进行定量分析,提高了测试结果的准确性,更加高效,是针状焦显微结构识别和定量分析的有效手段。
  • FIG. 550.  FIG. 550.

    FIG. 550.  FIG. 550.

    图  1  炭化反应装置示意图

    Figure  1  Schematic diagram of carbonization equipment

    图  2  偏光显微结构定量分析方法示意图

    Figure  2  Schematic diagram of the quantitative analysis method on polarized light microstructure

    图  3  自动测试系统成像图

    Figure  3  Automatic test system imaging

    图  4  不同温度下的生焦显微结构照片

    (a): 470 ℃; (b): 480 ℃; (c): 490 ℃; (d): 500 ℃; (e): 510 ℃

    Figure  4  Polarized micrographs of green coke at different temperatures

    图  5  不同压力制备的生焦显微结构照片

    (a): 0.1 MPa; (b): 0.2 MPa; (c): 0.3 MPa; (d): 0.4 MPa

    Figure  5  Polarized micrographs of green coke prepared at different pressures

    图  6  不同炭化时间的生焦显微结构照片(a): 2 h; (b): 4 h; (c): 6 h; (d): 8 h

    Figure  6  Polarized micrographs of green coke at different carbonization time (a): 2 h; (b): 4 h; (c): 6 h; (d): 8 h

    图  7  不同炭化温度条件制备的针状焦扫描电子显微镜照片

    (a): 470 ℃; (b): 480 ℃;(c): 490 ℃; (d): 500 ℃

    Figure  7  SEM images of needle coke under different carbonization temperatures

    图  8  不同炭化压力条件制得生焦制备的针状焦扫描电子显微镜照片

    (a): 0.1 MPa; (b): 0.2 MPa; (c): 0.3 MPa; (d): 0.4 MPa

    Figure  8  SEM images of needle coke under different carbonization pressures

    图  9  不同炭化时间条件制得生焦制备的针状焦扫描电子显微镜照片

    Figure  9  Polarized micrographs of green coke at different carbonization time

    (a): 2 h; (b): 4 h; (c): 6 h; (d): 8 h

    表  1  煤焦油沥青性质

    Table  1  Properties of coal tar pitch and components

    SampleElement composition w/%C/H (atomic ratio)Fraction distributionw/%Ash w/%
    CHNSOQIHSHI-TSTI-QS
    CTP92.324.421.280.511.471.745.7826.7349.0918.400.115
    Refined CTP92.254.401.201.580.571.750.0813.5047.4943.210.085
    notes:: by difference; : HS: hexane soluble; HI-TS: hexane insoluble but toluene soluble; TI-QS: toluene insoluble but quinoline soluble; QI: quinoline insoluble
    下载: 导出CSV

    表  2  各向异性组分划分标准

    Table  2  Textures standard for dividing anisotropic components

    Texture categoryOptical properties
    Wide domain streamlinelength > 60 μm
    Thick streamlinelength 30−60 μm
    Medium streamlinelength 10−30 μm
    Large-grain mosaicradius 5−10 μm
    Medium-grain mosaicradius 1.5−5 μm
    Fine-grain mosaicradius < 1.5 μm
    Isotropyno optical properties
    下载: 导出CSV

    表  3  不同温度下生焦各结构含量

    Table  3  Polarized structural content of green coke at different temperatures

    Temperature
    /℃
    Wide domain streamline /%Thick streamline /%Medium streamline /%Large-grain mosaic/%Medium-grain mosaic/%Fine-grained mosaic/%Isotropy /%Streamline total content/%Mosaic total content /%Total anisotropic structure content/%
    47043.41.20.12.90.54.447.544.57.852.5
    48056.613.73.21.40.52.122.673.54.077.4
    49084.68.81.80.61.50.62.195.22.797.9
    50082.414.41.40.71.10098.21.8100
    51075.819.24.00.60.40099.11.0100
    下载: 导出CSV

    表  4  不同压力下生焦各结构含量

    Table  4  Polarized structural content of green coke at different pressures

    Pressure/MPaWide domain streamline /%Thick streamline /%Medium streamline /%Large-grain mosaic/%Medium-grain mosaic/%Fine-grained mosaic/%Isotropy /%Streamline total content/%Mosaic total content /%Total anisotropic structure content/%
    0.187.16.31.10.00.90.54.194.51.495.9
    0.287.88.12.20.70.60.60.098.11.9100
    0.387.38.92.00.40.60.50.398.21.599.7
    0.484.68.81.80.61.50.62.195.22.797.9
    下载: 导出CSV

    表  5  不同炭化时间的生焦各结构含量

    Table  5  Polarized structural content of green coke at different carbonization time

    Carbonization time/hWide domain streamline /%Thick streamline /%Medium streamline /%Large-grain mosaic/%Medium-grain mosaic/%Fine-grained mosaic/%Isotropy /%Streamline total content/%Mosaic total content /%Total anisotropic structure content/%
    281.84.61.91.00.30.69.888.31.990.2
    487.38.71.31.30.70.70.097.32.7100
    687.88.12.20.70.60.60.098.11.9100
    889.86.31.80.71.30.10.097.92.1100
    下载: 导出CSV

    表  6  不同反应条件下的针状焦CTE

    Table  6  CTE of needle coke under different reaction conditions

    ParameterValue
    Temperature/℃490490490490490
    Pressure/MPa0.40.20.30.20.2
    Carbonization time/h66648
    CTE/(1 × 10−6/℃)1.931.541.791.681.55
    下载: 导出CSV
  • [1] MOCHIDA I, FEI Y Q, KORAI Y, FUJIMOTO K, YAMASHITA R. Carbonization in the tube bomb leading to needle coke: III. Carbonization properties of several coal-tar pitches[J]. Carbon,2016,27(3):375−380.
    [2] MOCHIDA I, FEI Y, KORAI Y, OISHI T. Co-carbonization of ethylene tar pitch and coal tar pitch to form needle coke[J]. Fuel,1990,69(6):672−677. doi: 10.1016/0016-2361(90)90027-N
    [3] TODO Y, OYAMA T, MOCHIDA I, KORAL Y, SATOSHI A, KINYA S. Cocarbonization properties of solvent deasphalted oil from a petroleum vacuum residue in production of needle coke[J]. J Jpn Pet Inst,2008,34(1):96−100.
    [4] MOCHIDA I, KORAI Y, SAKANISHI K, TODO Y, OYAMA T. Cocarbonization properties of heat-treated petroleum vacuum residue with FCC decant oils in production of needle coke[J]. J Jpn Pet Inst,2008,34(1):101−106.
    [5] 李强, 李开喜, 王芙蓉, 孙国华. 针状焦基活性炭的制备及其作为EDLCs电极材料的电化学性能[J]. 新型炭材料,2005,20(4):335−342. doi: 10.3321/j.issn:1007-8827.2005.04.009

    LI Qing, LI Kai-xi, WANG Fu-rong, SUN Guo-hua. Preparation of high porosity carbon electrodes from raw needle coke and their characterization for EDLCs[J]. New Carbon Mater,2005,20(4):335−342. doi: 10.3321/j.issn:1007-8827.2005.04.009
    [6] 许德平, 唐世波, 唐闲逸, 魏晓慧, 武欣. 针状焦制备过程中原料组分对中间相影响的研究进展[J]. 炭素技术,2016,35(1):34−39.

    XU De-ping, TANG Shi-bo, TANG Xian-yi, WEI Xiao-hui, WU Xin. Research advances of influence of components in feedstock on formation of mesophase in needle coke preparation[J]. Carbon Tech,2016,35(1):34−39.
    [7] ALVAREZ P, DIZE N, SANTAMARIA R, BLANCO C, MENENDEZ R, GRANDA M. Novel coal-based precursors for cokes with highly oriented microstructures[J]. Fuel,2012,95(1):400−406.
    [8] 张德保, 申海平, 范启明. 针状焦制备过程中的中间相研究进展[J]. 化工进展,2012,31(S2):175−181.

    ZHANG De-bao, SHEN Hai-ping, FAN Qi-ming. Research advances about mesophase in needle coke preparation[J]. Chem Ind Eng Prog,2012,31(S2):175−181.
    [9] ZHU Y M, ZHAO C L, XU Y L, HU C S, ZHAO X F. Preparation and characterization of coal pitch-based needle coke (PartⅠ): theeffects of aromatic Index (f_a) in refined coal pitch[J]. Energy Fuels,2019,33(4):3456−3464. doi: 10.1021/acs.energyfuels.9b00160
    [10] IM U, KIM J, LEE S H, LEE S M, LEE B R, PECK D H, JUNG D H. Preparation of activated carbon from needle coke via two-stage steam activation process[J]. Mater Lett,2019,237(15):22−25.
    [11] HALIM H, IM J, LEE C. Preparation of needle coke from petroleum by-products[J]. Carbon Lett,2013,14(3):152−161. doi: 10.5714/CL.2013.14.3.152
    [12] 芦时林, 冯安祖. 针状焦热膨胀系数与显微结构的关系[J]. 炭素技术,1987,5(7):9−13.

    LU Shi-lin, FENG An-zu. Relationship between thermal expansion coefficient and microstructure of needle coke[J]. Carbon Tech,1987,5(7):9−13.
    [13] MOCHIDA I, OYAMA T, KORAI Y. Formation scheme of needle coke from FCC-decant oil[J]. Carbon,1988,26(1):49−55. doi: 10.1016/0008-6223(88)90008-5
    [14] PATRICK J W, REYNOLDS M J, SHAW F H. Development of optical anisotropy in vitrains during carbonization[J]. Fuel,1973,52(3):198−204. doi: 10.1016/0016-2361(73)90079-3
    [15] 钱树安, 李春锋, 周国英. 炭化原料的组成结构和中间相组织形态之间的关系[J]. 燃料化学学报,1984,12(4):62−74.

    QIAN Shu-an, LI Chun-feng, ZHOU Guo-ying. The relationship between the composition and molecular structure of carbonizing feedstocks and mesophase textures formed in pyrolysis[J]. J Fuel Chem Technol,1984,12(4):62−74.
    [16] LEWIS R T, 彭颖. T. Lewis, 彭颖. 定量测定中间相沥青的各向异性区域的大小[J]. 新型炭材料,1986,5(3):48−50.

    LEWIS R T, PENG Ying. The anisotropic region of mesophase pitch was quantitatively determined[J]. New Carbon Mater,1986,5(3):48−50.
    [17] FLORES B D, BORREGO A G, DIEZ M A, SILVA D, GUILHERME L R, ZYMLA V, VILELA A C F, EDUARDO O. How coke optical texture became a relevant tool for understanding coal blending and coke quality[J]. Fuel Process Technol,2017,164:13−23. doi: 10.1016/j.fuproc.2017.04.015
    [18] MOCHIDA I, MARSH H. Carbonization and liquid-crystal (mesophase) development. 8. The co-carbonization of coals with acenaphthylene and decacyclene[J]. Fuel,1979,58(9):633−641. doi: 10.1016/0016-2361(79)90216-3
    [19] 杜亚平, 李峻海, 杨洋, 章真杰. 沥青中间相的光反射显微分析方法优化[J]. 燃料与化工,2014,45(6):49−52. doi: 10.3969/j.issn.1001-3709.2014.06.018

    DU Ya-ping, LI Jun-hai, YANG Yang, ZHANG Zeng-jie. Optimization of light reflection microanalysis method for asphalt mesophase[J]. Fuel Chem Proc,2014,45(6):49−52. doi: 10.3969/j.issn.1001-3709.2014.06.018
    [20] 侯先亮, 李铁虎, 庄强, 王珍, 程友亮, 赵廷凯. 图像处理技术在测定沥青中间相含量中的应用[J]. 炭素技术,2011,30(3):17−20. doi: 10.3969/j.issn.1001-3741.2011.03.005

    HONG You-liang, LI Tie-hu, ZHUANG Qiang, WANG Zhen, CHENG You-liang, ZHAO Ting-kai. Application of image processing technology in determination of asphalt mesophase content[J]. Carbon Tech,2011,30(3):17−20. doi: 10.3969/j.issn.1001-3741.2011.03.005
    [21] NARCISO-ROMERO F J, RODRIGUEZ-REINOSO F, DIEZ M A. Influence of the carbon material on the synthesis of silicon carbide[J]. Carbon,1999,37(11):1771−1778. doi: 10.1016/S0008-6223(99)00045-7
    [22] ZHU Y M, TANG S, ZHAO X, GAO L J. Co-carbonization of single coking coal and pyrolytic extracts from datong long-flame coal[J]. Metall Res Technol,2019,116(115):1−8.
    [23] WANG Z X, XUE P, CHEN K, GUO A J, LIN C H, KONG D H, SONG Z D, BO Y W. Correlation of temperature-programmed oxidation with microscopy for quantitative morphological characterization of thermal cokes produced from pilot and commercial delayed cokers[J]. Energy Fuels,2015,29(2):659−665.
    [24] 唐闲逸, 魏晓慧, 许德平, 张海永, 贺欣, 熊楚安, 唐瀚滢. 中温煤沥青喹啉不溶物的脱除及炭化制备针状焦[J]. 材料研究学报,2006,30(6):448−456.

    TANG Xian-yi, WEI Xiao-hui, XU De-ping, ZHANG Hai-yong, HE Xin, XIONG Chu-an, TANG Han-ying. Removal of QI from medium-temperature coal tar pitch and preparation of needle coke through carbonization[J]. Chin J Mater Res,2006,30(6):448−456.
    [25] 大谷杉郎, 真田雄三著. 炭化工学基础[M]. 张大名, 杨俊英, 译. 兰州: 兰州新华出版社, 1985: 31.

    OHGO S, MASADA Y. Basic of carbonization technics[M]. ZHANG Da-ming, YANG Jun-ying, trans. Lanzhou: Lanzhou Xinhua Printer, 1985: 31.
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  859
  • HTML全文浏览量:  545
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-21
  • 修回日期:  2020-11-16
  • 网络出版日期:  2021-03-19
  • 刊出日期:  2021-03-19

目录

    /

    返回文章
    返回