留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WO3增强RuO2/ZrO2表面酸性及其NH3选择性催化氧化性能研究

李粉吉 张艳琨 杨春晓 张可欣 夏福婷 张秋林 庞鹏飞 王慧敏

李粉吉, 张艳琨, 杨春晓, 张可欣, 夏福婷, 张秋林, 庞鹏飞, 王慧敏. WO3增强RuO2/ZrO2表面酸性及其NH3选择性催化氧化性能研究[J]. 燃料化学学报(中英文), 2021, 49(2): 228-237. doi: 10.19906/j.cnki.JFCT.2021015
引用本文: 李粉吉, 张艳琨, 杨春晓, 张可欣, 夏福婷, 张秋林, 庞鹏飞, 王慧敏. WO3增强RuO2/ZrO2表面酸性及其NH3选择性催化氧化性能研究[J]. 燃料化学学报(中英文), 2021, 49(2): 228-237. doi: 10.19906/j.cnki.JFCT.2021015
LI Fen-ji, ZHANG Yan-kun, YANG Chun-xiao, ZHANG Ke-xin, XIA Fu-ting, ZHANG Qiu-lin, PANG Peng-fei, WANG Hui-min. WO3 enhanced surface acidity of RuO2/ZrO2 and its performance in selective catalytic oxidation of NH3[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 228-237. doi: 10.19906/j.cnki.JFCT.2021015
Citation: LI Fen-ji, ZHANG Yan-kun, YANG Chun-xiao, ZHANG Ke-xin, XIA Fu-ting, ZHANG Qiu-lin, PANG Peng-fei, WANG Hui-min. WO3 enhanced surface acidity of RuO2/ZrO2 and its performance in selective catalytic oxidation of NH3[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 228-237. doi: 10.19906/j.cnki.JFCT.2021015

WO3增强RuO2/ZrO2表面酸性及其NH3选择性催化氧化性能研究

doi: 10.19906/j.cnki.JFCT.2021015
基金项目: 国家自然科学基金(21966033)资助
详细信息
    通讯作者:

    Tel:18314382129,E-mail:xiafuting@163.com

  • 中图分类号: O643

WO3 enhanced surface acidity of RuO2/ZrO2 and its performance in selective catalytic oxidation of NH3

Funds: The project was supported by the National Natural Science Foundation of China (21966033)
  • 摘要: 以氨的选择性催化氧化为主要研究对象,设计制备了RuO2/ZrO2催化剂和一系列不同含量WO3改性的RuO2/ZrO2催化剂。其中,RuO2/ZrO2催化剂显示出优异的催化活性和较差的N2选择性。引入5%或10%的WO3之后RuO2/ZrO2催化剂的活性不变,但是高温N2选择性显著提高,NH3在225 ℃实现完全转化。然而,当WO3的含量上升至15%和20%时,RuO2/ZrO2催化剂的催化活性稍微有所下降,且相比于RuO2/10%WO3-ZrO2、RuO215%WO3-ZrO2和RuO2/20%WO3-ZrO2催化剂的高温氮气选择性也没有进一步提升,因此,可以判断WO3的最佳含量为10%。此外,通过BET分析发现,WO3的加入能够改变催化剂的微观结构,对应的比表面积随着WO3含量的增加而增大。通过XRD、H2-TPR和XPS表征可知,WO3的引入能够改变ZrO2的晶型结构,使催化剂的稳定性增加,通过原位红外分析可知,WO3的引入使催化剂的表面酸性位点增加,较多的表面酸性位点有利于氨物种的吸附,能够抑制氨与氧气发生快速反应,避免形成较多副产物,是氮气选择性提高的关键所在。
  • 图  1  Ru/Zr和不同含量WO3掺杂的Ru/Zr催化剂的NH3-SCO性能测试

    Figure  1  NH3-SCO performance test of Ru/Zr and Ru/Zr catalysts doped with different contents of WO3(a): NH3 conversion; (b): N2 selectivity

    图  2  Ru/Zr和不同含量WO3掺杂的Ru/Zr催化剂的XRD谱图

    Figure  2  XRD spectra of the Ru/Zr and WO3 doped Ru/Zr catalysts

    图  3  Ru/Zr和不同含量WO3掺杂的Ru/Zr催化剂的N2吸附-脱附曲线和孔径分布

    Figure  3  N2 adsorption-desorption curve and pore size distribution of Ru/Zr and WO3 doped Ru/Zr catalysts

    图  4  Ru/Zr和不同含量WO3掺杂的Ru/Zr催化剂的拉曼光谱图

    Figure  4  Raman spectra of Ru/Zr and WO3 doped Ru/Zr catalysts

    图  5  载体WO3-ZrO2、Ru/Zr和不同含量WO3掺杂的Ru/Zr催化剂的H2-TPR谱图

    Figure  5  H2-TPR spectra of the WO3-ZrO2 support, Ru/Zr and WO3 doped Ru/Zr catalysts

    图  6  催化剂Ru/Zr和Ru/15%W-Zr催化剂的XPS谱图

    Figure  6  XPS spectra of the Ru/Zr and Ru/15%W-Zr catalysts

    图  7  (a)催化剂Ru/Zr和(b)Ru/15%W-Zr催化剂的表面酸性信息图

    Figure  7  Surface acidity of (a) Ru/Zr catalyst and (b) Ru/15%W-Zr catalyst

    图  8  200 ℃下Ru/Zr(A)和Ru/15%W-Zr(B)催化剂表面反应信息图

    Figure  8  Surface reaction of the Ru/Zr(A) and Ru/15%W-Zr(B) catalysts at 200 ℃

    图  9  Ru/Zr和Ru/15%W-Zr催化剂催化性能的长期稳定性测试

    Figure  9  Dependence of catalytic performance on reaction time of the Ru/Zr and Ru/15%W-Zr catalysts

    表  1  Ru/Zr和不同含量WO3掺杂的Ru/Zr催化剂的孔结构参数

    Table  1  Pore structure parameters of Ru/Zr and WO3 doped Ru/Zr catalysts

    CatalystSurface area A/(m2·g−1)Pore volume v/(cm3·g−1)Average pore size d/nm
    Ru/Zr40.70.2114.5
    Ru/5%W-Zr68.10.197.2
    Ru/10%W-Zr87.40.175.1
    Ru/15%W-Zr88.00.144.3
    Ru/20%W-Zr114.30.124.2
    下载: 导出CSV
  • [1] GUO J J, PENG Y, ZHANG Y N. Comparison of NH3-SCO performance over CuOx/H-SSZ-13 and CuOx/HSAPO-34 catalysts[J]. Appl Catal A: Gen,2019,585(5):117−119.
    [2] LIU H, FU M L, JIN X X, SHANG Y, SHINDELL D, FALUVE G, SHINDELL C, HE K. Health and climate impacts of ocean-going vessels in East Asia[J]. Nature Clim Change,2016,6(7):1037−1041.
    [3] LONG R. Selective catalytic oxidation of ammonia to nitrogen over Fe2O3-TiO2 prepared with a sol-gel method[J]. J Catal,2002,207(2):158−165.
    [4] LIU J, SUN M M, LIN Q J, LIU S, XU H D, CHEN Y Q. Promotional effects of ethylenediamine on the low-temperature catalytic activity of selective catalytic oxidation of ammonia over Pt/SiAlOx: States and particle sizes of Pt[J]. Appl Surf Sci,2019,481(1):1344−1351.
    [5] CHMIELARZ L, JABONSKA, MAGDALENA. Advances in selective catalytic oxidation of ammonia to dinitrogen: A review[J]. Rsc Adv,2015,5(54):43408−43431. doi: 10.1039/C5RA03218K
    [6] SANG M L, HONG S C. Promotional effect of vanadium on the selective catalytic oxidation of NH3 to N2 over Ce/V/TiO2 catalyst[J]. Appl Catal B: Environ,2015,163(2):30−39.
    [7] TANG X L, LI J Y, YI H H, YU Q J, GAO F Y, ZHANG R C, LI C L, CHU C. An efficient two-step method for NH3 removal at low temperature using CoOx-CuOx/TiO2 as SCO catalyst followed by NiMn2O4 as SCR catalyst[J]. Energ Fuels,2017,31(8):8580−8593. doi: 10.1021/acs.energyfuels.7b01329
    [8] SHOJAEE K, HAYNES B S, MONTOYA A. The catalytic oxidation of NH3 on Co3O4(110): A theoretical study[J]. Proc Combust Inst,2016,36(3):4365−4373.
    [9] RUTKOWSKA M, PACIA I, BASAG S, KOWALCZYK A, PIWOWARSKA Z, DUDA M, TARACH K A, GORA-MAREK K, MICHALIK M, DIAZ U, CHMIELARZ L. Catalytic performance of commercial Cu-ZSM-5 zeolite modified by desilication in NH3-SCR and NH3 -SCO processes[J]. Microprous Mesoporous Mater,2017,246:193−206. doi: 10.1016/j.micromeso.2017.03.017
    [10] LONG R Q, YANG R T. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe-exchanged zeolites[J]. J Catal,2001,201(1):145−152. doi: 10.1006/jcat.2001.3234
    [11] SONG D D, SHAO X Z, YUAN M L, WANG L, ZHAN W C, GUO Y L, GUO Y, LU G Z. Selective catalytic oxidation of ammonia over MnOx-TiO2 mixed oxides[J]. RSC Adv,2016,91(6):88117−88125.
    [12] LI Z, HONG H. Mechanism of selective catalytic oxidation of ammonia to nitrogen over Ag/Al2O3[J]. J Catal,2009,268(1):18−25. doi: 10.1016/j.jcat.2009.08.011
    [13] CUI X, ZHOU J, YE E, CHEN H, LI L, RUAN M, SHI J. Selective catalytic oxidation of ammonia to nitrogen over mesoporous CuO/RuO2 synthesized by co-nanocasting-replication method[J]. Catal-New York,2010,270:310−317.
    [14] OLOFSSON G, REINEWALLENBERG L, ANDERSSON A, CATAL J. Selective catalytic oxidation of ammonia to nitrogen at low temperature on Pt/CuO/Al2O3[J]. J Catal,2005,230(1):1−13.
    [15] SONIA A C, CARABINEIRO, NIEUWENHUYS B E. Selective oxidation of ammonia over Ir(110)[J]. Surf,2002,505(1/3):163−170.
    [16] WANG H M, ZHANG Q L, ZHANG T X, WANG J, WEI J, LIU M, NING P. Structural tuning and NH3-SCO performance optimization of CuO-Fe2O3 catalysts by impact of thermal treatment[J]. Appl Surf Sci,2019,485:81−91.
    [17] JABLONSKA M, PALKOVITS R. Copper based catalysts for the selective ammonia oxidation into nitrogen and water vapour-Recent trends and open challenges[J]. Appl Catal B: Environ.,2016,181(2):332−351.
    [18] QU Z P, FAN R, WANG Z, MIAO L. Selective catalytic oxidation of ammonia to nitrogen over MnO2 prepared by urea-assisted hydrothermal method[J]. Appl Surf Sci,2015,351(1):573−579.
    [19] SYLWIA G, KATERINA P, KAMIL G, ANETA S, KATARZYNA P, LUCIE O. Supplementary materials: Cu-Mg-Fe-O-(Ce) complex oxides as catalysts of selective catalytic oxidation of ammonia to dinitrogen (NH3-SCO)[J]. Catal,2020,10(2):153−175.
    [20] WANG Z, QU Z, QUAN X, WANG H. Selective catalytic oxidation of ammonia to nitrogen over CuO-CeO2 mixed oxides prepared by surfactant-templated method[J]. Appl Catal B: Environ,2013,134−135:153−166.
    [21] LEE S M, LEE H H, HONG S C. Influence of calcination temperature on Ce/TiO2 catalysis of selective catalytic oxidation of NH3 to N2[J]. Appl Catal A: Gen,2014,470(2):189−198.
    [22] GONG J L, OJIFINNI R A, KIM T S, WHITE J M, MULLINS C B. Selective catalytic oxidation of ammonia to nitrogen on atomic oxygen precovered au(111)[J]. J Am Chem Soc,2006,128(28):9012−9013. doi: 10.1021/ja062624w
    [23] HE S L, ZHANG C B, YANG M, ZHANG Y, XU W Q, CAO N, HE H. Selective catalytic oxidation of ammonia from MAP decomposition[J]. Sep Purif Technol,2007,58(1):173−178. doi: 10.1016/j.seppur.2007.07.015
    [24] 许一帆. 铜锰氧化物制备及其选择催化氧化氨性能研究[D]. 大连: 大连理工大学, 2016.

    XU Yi-fan. Preparation of Cu-Mn oxides and its performance on the selective catalytic oxidation of ammonia[D]. Dalian: Dalian University of Technology, 2016.
    [25] CURTIN T, LENIHAN S. Copper exchanged beta zeolites for the catalytic oxidation of ammonia[J]. Chem Comm,2003,9(11):1280−1281.
    [26] LIANG C X, LI X Y, QU Z PTADE M, LIU X M. The role of copper species on Cu/γ-Al2O3 catalysts for NH3-SCO reaction[J]. Appl Surf Sci,2012,258(8):3738−3743. doi: 10.1016/j.apsusc.2011.12.017
    [27] CHMIELARZ L, KUSTROWSKI P, PIWOWARSKA Z, MICHALIK M, PUDEKB, DZIEMBAJ R. Natural micas intercalated with Al2O3 and modified with transition metals as catalysts of the selective oxidation of ammonia to nitrogen[J]. Top Catal,2009,52(8):1017−1022. doi: 10.1007/s11244-009-9263-8
    [28] SAZONOVA N N, SIMAKOV A V, NIKORO T A, BARANNIK G B, VERINGA H. Selective catalytic oxidation of ammonia to nitrogen[J]. React Kinet Catal Lett,1996,57(1):71−79. doi: 10.1007/BF02076122
    [29] ZHANG Q L, WANG H M, NING P, SONG Z X, LIU X, DUAN Y K. In situ DRIFTS studies on CuO-Fe2O3 catalysts for low temperature selective catalytic oxidation of ammonia to nitrogen[J]. Appl Surf Sci,2017,419(10):733−743.
    [30] YANG M, WU C Q, ZHANG C B, HE H. Selective oxidation of ammonia over copper-silver-based catalysts[J]. Catal Today,2004,90(3/4):263−267.
    [31] SONG Z X, NING P, ZHANG Q L, LI H, ZHANG J H, WANG Y C, LIU X, HUAN Z Z. Activity and hydrothermal stability of CeO2-ZrO2-WO3 for the selective catalytic reduction of NOx with NH3[J]. J Environ Sci,2016,42(4):168−177.
    [32] WANG H M, NING P, ZHANG Q L, LIU X, ZHANG T X, FAN J, WANG J, LONG K X. Promotional mechanism of WO3 over RuO2-Fe2O3 catalyst for NH3 -SCO reaction[J]. Appl Catal A: Gen,2018,561:158−167. doi: 10.1016/j.apcata.2018.05.020
    [33] MA L L, SU H, WANG Z H, ZHANG C H, LIU Z M. A novel Cr/WO3-ZrO2 catalyst for the selective catalytic reduction of NOx with NH3[J]. Catal Commun,2019,125(3):77−81.
    [34] LIA S S, JIAO Y, WANG Z Z, WANG J L, ZHU Q, LI X Y, CHEN Y Q. Performance of RP-3 kerosene cracking over Pt/WO3-ZrO2 catalyst[J]. J Anal Appl Pyrolysis,2015,113:736−742.
    [35] MARTINZE A, PRIETO G, ARRIBAS M A, CONCEPCION P, SANCHEZROYO J F. Influence of the preparative route on the properties of WOx-ZrO2 catalysts: A detailed structural, spectroscopic, and catalytic study[J]. J Catal,2007,248(2):288−302. doi: 10.1016/j.jcat.2007.03.022
    [36] WANG X, SHIL, CHENC, XU N. Alkylation of Benzene with 1-Hexene Catalyzed by WO3/ZrO2 Soild Acid[J]. Chin J Catal,2006,27(1):60−64.
    [37] SONG Y Q, ZHANG J J, ZHOU X L, WANG J A, XU L Y, YU G X. WO3 microcrystallites: One of the crucial factors controlling the isomerization activity of Pt/WO3-ZrO2[J]. Catal Today,2011,166(1):67−72.
    [38] ZHANG C, LIU T, WANG H J, WANG F, PAN X Y. Synthesis of acetyl salicylic acid over WO3/ZrO2 solid superacid catalyst[J]. Chem Eng J,2011,174(1):236−241. doi: 10.1016/j.cej.2011.09.010
    [39] BUSTO M, GRAU J M, VERA C R. Screening of optimal pretreatment and reaction conditions for the isomerization-cracking of long paraffins over Pt/WO3-ZrO2 catalysts[J]. Appl Catal A: Gen,2010,387(1/2):35−44. doi: 10.1016/j.apcata.2010.07.061
    [40] LIU J X, LIU J, ZHAO Z, SONG W Y, WEI Y C, DUAN A J, JIANG G Y. Synthesis of a chabazite-supported copper catalyst with full mesopores for selective catalytic reduction of nitrogen oxides at low temperature[J]. Chin J Catal,2016,37(5):750−759. doi: 10.1016/S1872-2067(15)61072-5
    [41] BASHEL S N, ALI T T, MOHAMED, MOKHTAR, KATABATHINI, NARASIMHARAO. Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange[J]. Nano Res Lett,2015,10(73):1−13.
    [42] TRIWALLYONO S, JALIL A A, HATTORI H. Study of hydrogen adsorption on Pt/WO3-ZrO2 through Pt Sites[J]. Nat Gas Chem,2007,16(3):252−257.
    [43] TANAKA M, HASEGAWA M, DERICIOGLU A F. Measurement of residual stress in air plasma-sprayed Y2O3–ZrO2 thermal barrier coating system using micro-Raman spectroscopy[J]. Mater Sci Eng, A,2006,419(1/2):262−268.
    [44] GAR A M, OOKAWARA S, FUKUSHI D, SATO A, TAWFIK A. Improved WO3 photocatalytic efficiency using ZrO2 and Ru for the degradation of carbofuran and ampicillin[J]. J Hazard Mater,2016,302(1):225−231.
    [45] MARIA A, CORTES-JACOME, CARLOSANGELES CHAVEZ. Generation of WO3-ZrO2 catalysts from solid solutions of tungsten in zirconia[J]. J Solid State Chem,2006,179(8):2663−2673.
    [46] MEI Z J, LI Y, FAN M H. The effects of bimetallic Co-Ru nanoparticles on Co/RuO2/Al2O3 catalysts for the water gas shift and methanation[J]. Int J Hydrog Energy,2014,39(27):14808−14816. doi: 10.1016/j.ijhydene.2014.07.072
    [47] CHEN C M, CAO Y, LIU S T, CHEN J M, JIA W B. The catalytic properties of Cu modified attapulgite in NH3-SCO and NH3-SCR reactions[J]. Appl Surf Sci,2019,480(6):537−547.
    [48] QADIR K, JOO S H, MUN B S, RUTCHER D R, RENZAS J R, AKSOY F, LIV Z, SOMORJAI G A, PARK J Y. Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS[J]. Nano Lett,2012,(12):5761−8.
    [49] LI L L, CAI J H, LIU Y, NI J, LIN B Y, WANG X Y, AU C T, JIANG L L. Zeolite-seed-directed Ru nanoparticles highly resistant against sintering for effificient nitrogen activation to ammonia[J]. Sci Bull,2020,65:1085−1093. doi: 10.1016/j.scib.2020.02.010
    [50] SHAN W, LIU F, HE H. Novel cerium-tungsten mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Chem Commun,2011,47(28):8046−8048. doi: 10.1039/c1cc12168e
    [51] LIU F D, HE H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3[J]. J Phy Chem C,2010,114(40):16929−16936. doi: 10.1021/jp912163k
    [52] MYAGKOV V G, TAMBASOV I A, BAYUKOV O A. Solid state synthesis and characterization of Fe-ZrO2 ferromagnetic nanocomposite thin films[J]. J Alloys and Compd,2015,636(5):223−228.
    [53] ZENG Y, ZHANG S, WANG Y. CeO2 supported on reduced TiO2 for selective catalytic reduction of NO by NH3[J]. J Colloid Interface Sci,2017,496(15):487−495.
    [54] HADJIIVANOV K I. Identification of neutral and charged NxOy surface species by IR spectroscopy[J]. Catal Rev Sci Eng,2007,42(1/2):71−144.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  337
  • HTML全文浏览量:  102
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-13
  • 修回日期:  2020-11-17
  • 刊出日期:  2021-02-08

目录

    /

    返回文章
    返回