留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

膨胀石墨负载纳米Pt催化剂的制备及其电催化性能

陈茂军 徐斌 董汉莛 吴雄喜 曾丽

陈茂军, 徐斌, 董汉莛, 吴雄喜, 曾丽. 膨胀石墨负载纳米Pt催化剂的制备及其电催化性能[J]. 燃料化学学报(中英文), 2021, 49(3): 373-378. doi: 10.19906/j.cnki.JFCT.2021019
引用本文: 陈茂军, 徐斌, 董汉莛, 吴雄喜, 曾丽. 膨胀石墨负载纳米Pt催化剂的制备及其电催化性能[J]. 燃料化学学报(中英文), 2021, 49(3): 373-378. doi: 10.19906/j.cnki.JFCT.2021019
CHEN Mao-jun, XU Bin, DONG Han-ting, WU Xiong-xi, ZENG Li. Preparation of expanded graphite supported Pt nanoparticle catalyst and its electrocatalytic performance in the direct methanol fuel cell[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 373-378. doi: 10.19906/j.cnki.JFCT.2021019
Citation: CHEN Mao-jun, XU Bin, DONG Han-ting, WU Xiong-xi, ZENG Li. Preparation of expanded graphite supported Pt nanoparticle catalyst and its electrocatalytic performance in the direct methanol fuel cell[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 373-378. doi: 10.19906/j.cnki.JFCT.2021019

膨胀石墨负载纳米Pt催化剂的制备及其电催化性能

doi: 10.19906/j.cnki.JFCT.2021019
基金项目: 浙江省基础公益研究项目(LGG18E060002)和浙江省教育厅科研项目(Y201941416)资助
详细信息
    通讯作者:

    E-mail: chenmaojun1978@163.com

  • 中图分类号: O643.3;TM911.4

Preparation of expanded graphite supported Pt nanoparticle catalyst and its electrocatalytic performance in the direct methanol fuel cell

Funds: The project was supported by the Public Projects of Zhejiang Province (LGG18E060002) and Research Foundation of Education of Zhejiang Province (Y201941416).
  • 摘要: 以天然鳞片石墨为基材,采用高氯酸插层氧化制备了膨胀石墨(EG),利用乙二醇液相还原法在其表面负载了Pt纳米颗粒;采用XRD、TEM、SEM及循环伏安曲线(CV)等手段对其形貌、结构及对甲醇的电催化性能进行了表征研究。结果表明,Pt纳米颗粒的平均粒径为2.56 nm,均匀地分布在膨胀石墨载体表面,而片状结构的膨胀石墨载体能明显提升其电催化活性和抗CO中毒性能;相同条件下,该膨胀石墨负载纳米Pt催化剂的质量活性比和电流密度分别是商用JM Pt/C的1.24倍和1.5倍。
  • 图  1  催化剂(a) JM Pt/C和(b) Pt/EG的XRD谱图

    Figure  1  XRD patterns of (a) JM Pt/C and (b) Pt/EG catalysts

    图  2  EG (a)的SEM和EG片状(b)的TEM照片

    Figure  2  SEM image of EG (a) and TEM image of EG sheets (b)

    图  3  EG的红外光谱谱图

    Figure  3  FT-IR spectrum of EG

    图  4  催化剂(a) JM Pt/C和((b)、(c)) Pt/EG的TEM照片和(d) Pt/EG的EDX谱图

    Figure  4  TEM images of (a) JM Pt/C, ((b) and (c)) Pt/EG and (d) EDX spectrum of Pt/EG

    图  5  催化剂(a) JM Pt/C和(b) Pt/EG的TEM照片Pt粒子的粒径分布

    Figure  5  Histograms of Pt particle size distribution of (a) JM Pt/C and (b) Pt/EG

    图  6  JM Pt/C和Pt/EG催化剂在0.5 mol/L H2SO4溶液中的循环伏安图

    Figure  6  Cyclic voltammograms of JM Pt/C and Pt/EG catalysts in 0.5 mol/L H2SO4 at a scan rate of 50 mV/s

    图  7  JM Pt/C和Pt/EG催化剂在0.5 mol/L H2SO4+1.0 mol/L CH3OH溶液中的循环伏安图

    Figure  7  Cyclic voltammograms of methanol oxidation on JM Pt/C and Pt/EG catalysts in 0.5 mol/L H2SO4 + 1.0 mol/L CH3OH solution at a scan rate of 50 mV/s

    图  8  JM Pt/C和Pt/EG催化剂对甲醇电催化的计时电流曲线

    Figure  8  Chronoamperomtric curves recorded at 0.8 V in 0.5 mol/L H2SO4 + 1.0 mol/L CH3OH solution for JM Pt/C and Pt/EG catalysts

  • [1] MUNJEWAR S S, THOMBRE S B, MALLICK R K. A comprehensive review on recent material development of passive direct methanol fuel cell[J]. Ionics,2017,23(1):1−18. doi: 10.1007/s11581-016-1864-1
    [2] KAMARUDIN S K, ACHMAD F, DAUD W R W. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices[J]. Int J Hydrogen Energy,2009,34(16):6902−6916. doi: 10.1016/j.ijhydene.2009.06.013
    [3] LIU H, SONG C, ZHANG L, ZHANG J, WANG H, WILKINSON D P. A review of anode catalysis in the direct methanol fuel cell[J]. J Power Sources,2006,155(2):95−110. doi: 10.1016/j.jpowsour.2006.01.030
    [4] TOLMACHEV Y V, PETRII O A. Pt-Ru electrocatalysts for fuel cells: Developments in the last decade[J]. J Solid State Electrochem,2017,21(3):613−639. doi: 10.1007/s10008-016-3382-5
    [5] WEI Y C, LIU C W, CHANG W J, WANG K W. Promotion of Pt-Ru/C catalysts driven by heat treated induced surface segregation for methanol oxidation reaction[J]. J Alloys Compd,2011,509(2):535−541. doi: 10.1016/j.jallcom.2010.09.096
    [6] HAN F, WANG X, LIAN J, WANG Y. The effect of Sn content on the electrocatalytic properties of Pt-Sn nanoparticles dispersed on graphene nanosheets for the methanol oxidation reaction[J]. Carbon,2012,50(15):5498−5504. doi: 10.1016/j.carbon.2012.07.039
    [7] PECH-RODRÍGUEZ W J, CALLES-ARRIAGA C, GONZÁLEZ-QUIJANO D, VARGAS-GUTIÉRREZ G, MORAIS C, NAPPORN T W, RODRÍGUEZ-VARELA F J. Electrocatalysis of the Ethylene glycol oxidation reaction and in situ Fourier-transform infared study on PtMo/C electrocatalysts in alkaline and acid media[J]. J Power Sources,2018,375:335−344. doi: 10.1016/j.jpowsour.2017.07.081
    [8] 赵海东, 卢珍, 刘锐, 李作鹏, 郭永. 铂银合金的制备及其对甲醇电氧化反应的催化性能(英文)[J]. 燃料化学学报,2020,48(8):1015−1024. doi: 10.1016/S1872-5813(20)30069-4

    ZHAO Hai-dong, LU Zhen, LIU Rui, LI Zuo-peng, GUO Yong. Preparation of platinum-silver alloy nanoparticles and their catalytic performance in methanol electro-oxidation[J]. J Fuel Chem Technol,2020,48(8):1015−1024. doi: 10.1016/S1872-5813(20)30069-4
    [9] CHEN M J, LOU B Y, NI Z J, XU B. PtCo nanoparticles supported on expanded graphite as electrocatalyst for direct methanol fuel cell[J]. Electrochim Acta,2015,165:105−109.
    [10] OU L. The origin of enhanced electrocatalytic activity of Pt-M (M=Fe, Co, Ni, Cu, and W) alloys in PEM fuel cell cathodes: A DFT computational study[J]. Comput Theor Chem,2014,1048(0):69−76.
    [11] RETHINASABAPATHY M, KANG S M, HALDORAI Y, JANKIRAMAN M, JONNA N, CHOE S R, HUH Y S, NATESAN B. Ternary PtRuFe nanoparticles supported N-doped graphene as an efficient bifunctional catalyst for methanol oxidation and oxygen reduction reactions[J]. Int J Hydrogen Energy,2017,42(52):30738−30749. doi: 10.1016/j.ijhydene.2017.10.121
    [12] TELIZ E, DÍAZ V, PÉREZ I, CORENGIA M, ZINOLA C F. Carbon supported Pt, Ru and Mo catalysts for methanol electrooxidation[J]. Int J Hydrogen Energy,2012,37(19):14761−14768. doi: 10.1016/j.ijhydene.2011.12.084
    [13] LEE E, MURTHY A, MANTHIRAM A. Effect of Mo addition on the electrocatalytic activity of Pt-Sn-Mo/C for direct ethanol fuel cells[J]. Electrochim Acta,2011,56(3):1611−1618. doi: 10.1016/j.electacta.2010.10.086
    [14] KIM J, POLIQUIT B Z, NAM H S, KIM S H, LEE Y M, KIM K M, KO J M. Electrochemical activities of Pt-Ru-Co and Pt-Ru-Ni electrocatalysts supported by a carbon fiber web[J]. Curr Appl Phys,2012,12(1):254−258. doi: 10.1016/j.cap.2011.06.014
    [15] THAMER B, EL-NEWEHY M, BARAKAT N, AL-DEYAB S, KIM H. Preparation of zero-valent Co/N-CNFs as an immobilized thin film onto graphite disc for methanol electrooxidation[J]. Fiber Polym,2017,18:696−705. doi: 10.1007/s12221-017-1068-y
    [16] ZHANG L R, ZHAO J, LI M, NI H T, ZHANG J L, FENG X M, MA Y W, FAN Q L, WANG X Z, HU Z, HUANG W. Preparation of graphene supported nickel nanoparticles and their application to methanol electrooxidation in alkaline medium[J]. New J Chem,2012,36(4):1108−1113. doi: 10.1039/c2nj20690k
    [17] SHUIHUA T, GONGQUAN S, JING Q, SHIGUO S, JUNSONG G, QIN X, HAARBERG G M. Review of new carbon materials as catalyst supports in direct alcohol fuel cells[J]. Chin J Catal,2010,31(1):12−17. doi: 10.1016/S1872-2067(09)60034-6
    [18] AHMADI R, AMINI M K. Synthesis and characterization of Pt nanoparticles on sulfur-modified carbon nanotubes for methanol oxidation[J]. Int J Hydrogen Energy,2011,36(12):7275−7283. doi: 10.1016/j.ijhydene.2011.03.013
    [19] 钟盛文, 胡仙超, 俞园, 余长林, 周阳. 核壳结构碳化钨复合微球催化剂对甲醇电催化性能(英文)[J]. 燃料化学学报,2018,46(5):585−591. doi: 10.3969/j.issn.0253-2409.2018.05.011

    ZHONG Sheng-wen, HU Xian-chao, YU Yuan, YU Chang-lin, ZHOU Yang. Core-shell hierarchical tungsten carbide composite microspheres towards methanol electrooxidation[J]. J Fuel Chem Technol,2018,46(5):585−591. doi: 10.3969/j.issn.0253-2409.2018.05.011
    [20] CALVILLO L, LÁZARO M, GARCÍA-BORDEJÉ E, MOLINER R, CABOT P, ESPARBÉ I, PASTOR E, QUINTANA J. Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells[J]. J Power Sources,2007,169(1):59−64. doi: 10.1016/j.jpowsour.2007.01.042
    [21] PARK I S, PARK K W, CHOI J H, PARK C R, SUNG Y E. Electrocatalytic enhancement of methanol oxidation by graphite nanofibers with a high loading of PtRu alloy nanoparticles[J]. Carbon,2007,45(1):28−33. doi: 10.1016/j.carbon.2006.08.011
    [22] BHAVANI K S, ANUSHA T, BRAHMAN P K. Fabrication and characterization of gold nanoparticles and fullerene-C60 nanocomposite film at glassy carbon electrode as potential electro-catalyst towards the methanol oxidation[J]. Int J Hydrogen Energy,2019,44(47):25863−25873. doi: 10.1016/j.ijhydene.2019.08.005
    [23] ANTOLINI E. Graphene as a new carbon support for low-temperature fuel cell catalysts[J]. Appl Catal B-Environ,2012,123:52−68.
    [24] 魏英祥, 涂伟霞. 膨胀石墨负载钯纳米颗粒催化六价铬还原反应[J]. 高等学校化学学报,2014,35(11):2397−2402.

    WEI Yingxiang, TUWeixia. Reduction of hexavalent chromium over the expanded graphite supported palladium nanocatalyst[J]. Chem J Chin Univ,2014,35(11):2397−2402.
    [25] YUAN J, TANG S, ZHU Z, QIN X, QU R, DENG Y, WU L, LI J, HAARBERG G M. Facile synthesis of high-performance Ni(OH)2/expanded graphite electrodes for asymmetric supercapacitors[J]. J Mater Sci-Mater El,2017,28(23):18022−18030. doi: 10.1007/s10854-017-7745-1
    [26] LI H, ZHANG Y, WAN Q, LI Y, YANG N. Expanded graphite and carbon nanotube supported palladium nanoparticles for electrocatalytic oxidation of liquid fuels[J]. Carbon,2018,131:111−119. doi: 10.1016/j.carbon.2018.01.093
    [27] DHAKATE S, SHARMA S, BORAH M, MATHUR R, DHAMI T. Expanded graphite-based electrically conductive composites as bipolar plate for PEM fuel cell[J]. Int J Hydrogen Energy,2008,33(23):7146−7152. doi: 10.1016/j.ijhydene.2008.09.004
    [28] RAMACHANDRAN R, FELIX S, JOSHI G M, RAGHUPATHY B P C, JEONG S K, GRACE A N. Synthesis of graphene platelets by chemical and electrochemical route[J]. Mater Res Bull,2013,48(10):3834−3842. doi: 10.1016/j.materresbull.2013.05.085
    [29] HYDE T. Final analysis: Crystallite size analysis of supported platinum catalysts by XRD[J]. Platin Met Rev,2008,52(2):129−130. doi: 10.1595/147106708X299547
    [30] OJANI R, RAOOF J B, GOLI M, VALIOLLAHI R. Pt–Co nanostructures electrodeposited on graphene nanosheets for methanol electrooxidation[J]. J Power Sources,2014,264:76−82. doi: 10.1016/j.jpowsour.2014.03.147
    [31] VELÁZQUEZ-PALENZUELA A, CENTELLAS F, GARRIDO J A, ARIAS C, RODRÍGUEZ R M, BRILLAS E, CABOT P L. Kinetic analysis of carbon monoxide and methanol oxidation on high performance carbon-supported Pt-Ru electrocatalyst for direct methanol fuel cells[J]. J Power Sources,2011,196(7):3503−3512. doi: 10.1016/j.jpowsour.2010.12.044
  • 加载中
图(9)
计量
  • 文章访问数:  271
  • HTML全文浏览量:  103
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-19
  • 修回日期:  2020-11-09
  • 网络出版日期:  2021-03-19
  • 刊出日期:  2021-03-19

目录

    /

    返回文章
    返回