留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蜜勒胺催化剂的制备及在环碳酸酯合成中的应用研究

张源萍 李晓云 邸亚丽 赵雨花 亢茂青 李其峰 王军威

张源萍, 李晓云, 邸亚丽, 赵雨花, 亢茂青, 李其峰, 王军威. 蜜勒胺催化剂的制备及在环碳酸酯合成中的应用研究[J]. 燃料化学学报(中英文), 2021, 49(3): 379-386. doi: 10.19906/j.cnki.JFCT.2021020
引用本文: 张源萍, 李晓云, 邸亚丽, 赵雨花, 亢茂青, 李其峰, 王军威. 蜜勒胺催化剂的制备及在环碳酸酯合成中的应用研究[J]. 燃料化学学报(中英文), 2021, 49(3): 379-386. doi: 10.19906/j.cnki.JFCT.2021020
ZHANG Yuan-ping, LI Xiao-yun, DI Ya-li, ZHAO Yu-hua, KANG Mao-qing, LI Qi-feng, WANG Jun-wei. Study on the synthesis of melem catalyst and its application in synthesis of cyclic carbonate[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 379-386. doi: 10.19906/j.cnki.JFCT.2021020
Citation: ZHANG Yuan-ping, LI Xiao-yun, DI Ya-li, ZHAO Yu-hua, KANG Mao-qing, LI Qi-feng, WANG Jun-wei. Study on the synthesis of melem catalyst and its application in synthesis of cyclic carbonate[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 379-386. doi: 10.19906/j.cnki.JFCT.2021020

蜜勒胺催化剂的制备及在环碳酸酯合成中的应用研究

doi: 10.19906/j.cnki.JFCT.2021020
基金项目: 山西省重点研发计划项目(20181101012),山西省重点研发计划项目(201903D121104)和山西省青年基金(201901D211586)资助
详细信息
    通讯作者:

    Tel:13934558196,E-mail:liqf@sxicc.ac.cn

  • 中图分类号: O643.36

Study on the synthesis of melem catalyst and its application in synthesis of cyclic carbonate

Funds: The project was supported by Key Research and Development Program of Shanxi Province (20181101012), Key Research and Development Program of Shanxi Province (201903D121104) and Shanxi Province Science Foundation for Youths (201901D211586)
  • 摘要: 以纳米二氧化硅 (SiO2) 为模板,以三聚氰胺为前驱体,采用固相反应法制备一系列介孔蜜勒胺 (melem) 材料。通过调控硬模板剂和前驱体的用量,最终得到一系列高比表面积 (40−92 m2/g) 和孔体积 (0.179−0.407 cm3/g)的介孔 melem材料。将其作为催化剂用于1, 4 -丁二醇二缩水甘油醚 (BDODGE) 与CO2的环加成反应中,结果表明,随着比表面积增大,催化剂活性相比未加入模板剂的melem样品有了显著提高。三聚氰胺与纳米SiO2的质量比为2时制备的催化剂,在130 ℃、20 h、2.0 MPa条件下,BDODGE转化率为99.3%,环碳酸酯选择性为99.5%。
  • 图  1  类石墨相氮化碳 (g-C3N4) 的合成过程

    Figure  1  Synthesis reaction process of g-C3N4

    图  2  蜜勒胺 (melem) 催化剂的合成路线示意图

    Figure  2  Synthesis process of melem catalyst

    图  3  BDODGE与CO2的环加成反应

    Figure  3  Cycloaddition reaction of BDODGE with CO2

    图  4  样品CN-450-r (a) 和mp-CN-450-r (b) 的XRD谱图

    Figure  4  XRD patterns of CN-450-r (a) and mp-CN-450-r (b) catalysts

    图  5  样品CN-450-r (a) 和mp-CN-450-r (b) 的FT-IR谱图

    Figure  5  FT-IR spectra of CN-450-r (a) and mp-CN-450-r (b) catalysts

    图  6  CN-450 (a) 和mp-CN-450-r (b) 样品的SEM照片

    Figure  6  SEM images of CN-450 (a) and mp-CN-450-r (b) samples

    图  7  mp-CN-450-r催化剂N2吸附-脱附等温线 (a) 和孔径分布 (b)

    Figure  7  Nitrogen adsorption-desorption isotherms (a) and Barret-Joyner-Halenda (BJH) pore size distribution plots (b) of mp-CN-450-r

    图  8  BDODGE及相应的环状碳酸酯的FT-IR和1H NMR谱图

    Figure  8  FT-IR spectra and 1H NMR spectra of BDODGE and cyclic carbonate

    表  1  CN-450-r及mp-CN-450-r材料的织构分析

    Table  1  Textual parameters of CN-450-r and mp-CN-450-r materials

    EntryCatalystSBET/ (m2·g−1)Pore volume/ (cm3·g−1)Average pore diameter / nm
    1CN-45040.015716.3
    2CN-450-870.033219.1
    3CN-450-4160.058914.8
    4CN-450-2360.139415.6
    5mp-CN-450-8400.179417.7
    6mp-CN-450-4690.327518.9
    7mp-CN-450-2920.407217.6
    8SiO21890.782616.6
    下载: 导出CSV

    表  2  CN-450-r及mp-CN-450-r催化剂对BDODGE与CO2环加成反应的影响

    Table  2  Catalytic performance of different CN-450-r and mp-CN-450-r catalysts in the reaction of BDODGE and CO2

    EntryCatalystBDODGE
    conversion/%
    Selectivity/
    %
    1 aCN-45032.591.7
    2 aCN-450-825.899.0
    3 aCN-450-438.299.7
    4 aCN-450-233.594.2
    5 b[19]CN-450-W93.199.3
    6 cmp-CN-450-897.698.3
    7 cmp-CN-450-498.798.9
    8 cmp-CN-450-299.399.5
    a reaction conditions:W(BDODGE) = 30 g, W(catalyst) = 1.5 g, p(CO2) = 2.0 MPa, t = 140 ℃, t = 20 h; b W(catalyst) = 2.1 g; c t = 130 ℃
    下载: 导出CSV

    表  3  各种催化剂催化CO2环加成反应对比

    Table  3  Comparison of various catalysts for the cycloaddition of CO2

    EntryCatalystConversion / %Selectivity / %Ref.
    1 am-C3N436.198.0[19]
    2 au-C3N451.398.2[19]
    3 bZnBr2/u-CN/r-Al2O398.999.1[25]
    4 cD29695.897.1[26]
    5 dLiBr94.099.1[27]
    6 mp-CN-450-299.399.5this work
    a reaction conditions:W(BDODGE) = 30 g, W(catalyst) = 5.0%, p(CO2) = 1.0 MPa, t = 140 ℃, t = 20 h;b W(catalyst) = 15.1%, t = 30 h;c W(PPGDGE) = 100 g, W(catalyst) = 10%, t = 30 h;d W(E51) = 30 g, W(catalyst) = 1.0%, W(DMF) = 25 g, t = 90 ℃
    下载: 导出CSV
  • [1] OLAH G A, PRAKASH G K, GOEPPERT A. Anthropogenic chemical carbon cycle for a sustainable future[J]. J Am Chem Soc,2011,133(33):12881−12898. doi: 10.1021/ja202642y
    [2] LI L, ZHAO N, WEI W, SUN Y H. A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences[J]. Fuel, 2013, 108 (1): 112−130.
    [3] COMERFORD J W, INGRAM I D V, NORTH M, WU X. Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings[J]. Green Chem,2015,17(4):1966−1987. doi: 10.1039/C4GC01719F
    [4] MARINO T, PONTE F, MAZZONE G, SICILIA E, TOSCANO M, RUSSO N. The ability of a zinc pyrrolidine complex to catalyze the synthesis of cyclic carbonates from carbon dioxide and epoxides: A mechanistic theoretical investigation[J]. Dalton Trans,2017,46(28):9030−9035. doi: 10.1039/C7DT01642E
    [5] LI J W, REN Y W, QI C R, JIANG H F. A chiral salen-based MOF catalytic material with high thermal, aqueous and chemical stabilities[J]. Dalton Trans,2017,46(24):7821−7832. doi: 10.1039/C7DT01116D
    [6] DAI W L, YIN S F, GUO R, LUO S L, DU X, AU C T. Synthesis of propylene carbonate from carbon dioxide and propylene oxide using Zn-Mg-Al composite oxide as high-efficiency catalyst[J]. Catal Let,2009,136(1/2):35−44.
    [7] ADELEYE A I, PATEL D, NIYOGI D, SAHA B. Efficient and greener synthesis of propylene carbonate from carbon dioxide and propylene oxide[J]. Ind Eng Chem Res,2014,53(49):18647−18657. doi: 10.1021/ie500345z
    [8] DOSKOCIL E J. Effect of water and alkali modifications on ETS-10 for the cycloaddition of CO2 to propylene oxide[J]. J Phys Chem B,2005,109(6):2315−2320. doi: 10.1021/jp048870g
    [9] SRIVASTAVA R, SRINIVAS D, RATNASAMY P. Synthesis of polycarbonate precursors over titanosilicate molecular sieves[J]. Catal Lett,2003,91(1/2):133−139.
    [10] FENG D W, CHUNG W C, WEI Z W, GU Z Y, JIANG H L, CHEN Y P, DARENSBOURG D J, ZHOU H C. Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination[J]. J Am Chem Soc,2013,135(45):17105−17110. doi: 10.1021/ja408084j
    [11] BABU R, ROSHAN R, KATHALIKKATTIL A C, KIM D W, PAEK D W. Rapid, microwave-assisted synthesis of cubic, three-dimensional, highly porous MOF-205 for room temperature CO2 fixation via cyclic carbonate synthesis[J]. ACS Appl Mater Interfaces,2016,8(49):33723−33731. doi: 10.1021/acsami.6b12458
    [12] SU Q, SUN J, WANG J Q, YANG Z F, CHENG WG, ZHANG S J. Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates[J]. Catal Sci Technol,2014,4(6):1556−1562. doi: 10.1039/c3cy00921a
    [13] BISWAS T, MAHALINGAM V. g-C3N4 and tetrabutylammonium bromide catalyzed efficient conversion of epoxide to cyclic carbonate under ambient conditions[J]. New J Chem,2017,41(24):14839−14842. doi: 10.1039/C7NJ03720A
    [14] XU J, LONG K Z, WANG Y, XUE B, LI Y X. Fast and facile preparation of metal-doped g-C3N4 composites for catalytic synthesis of dimethyl carbonate[J]. Appl Catal A: Gen,2015,496:1−8. doi: 10.1016/j.apcata.2015.02.025
    [15] ZHU J J, DIAO T T, WANG W Y, XU X L, SUN X Y, CARABINEIRO S, ZHAO Z. Boron doped graphitic carbon nitride with acid-base duality for cycloaddition of carbon dioxide to epoxide under solvent-free condition[J]. Appl Catal B: Environ,2017,219:92−100. doi: 10.1016/j.apcatb.2017.07.041
    [16] LIU M S, LAN J W, LIANG L, SUN J M, ARAI M. Heterogeneous catalytic conversion of CO2 and epoxides to cyclic carbonates over multifunctional tri-s-triazine terminal-linked ionic liquids[J]. J Catal,2017,347:138−147. doi: 10.1016/j.jcat.2016.11.038
    [17] GOETTMANN F, THOMAS A, ANTONIETTI M. Metal-free activation of CO2 by mesoporous graphitic carbon nitride[J]. Angew Chem Int Ed,2007,46(15):2717−2720. doi: 10.1002/anie.200603478
    [18] SONG X H, WU Y F, PAN D H, WEI R P, GAO L J, ZHANG J, XIAO G M. Melem based multifunctional catalyst for chemical fixation of carbon dioxide into cyclic carbonate[J]. J CO2 Util,2018,24:287−297. doi: 10.1016/j.jcou.2018.01.017
    [19] 梁宏光. 多官能度五元环状碳酸酯合成中多相催化剂的制备及构效关系研究[D]. 太原: 中国科学院山西煤炭化学研究所, 2019.

    LIANG hong-guang. The study on the preparation and structure-performance relationship of heterogeneous catalysts for synthesis of polyfunctional five-membered cyclic carbonates[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2019.
    [20] LI X, KE J, WANG J, LIANG C, KANG M, ZHAO Y, LI Q. A new amino-alcohol originated from carbon dioxide and its application as chain extender in the preparation of polyurethane[J]. J CO2 Util,2018,26:52−9. doi: 10.1016/j.jcou.2018.04.018
    [21] JURGENS B, IRRAN E, SENKER J, KROLL P, MULLER H, SCHNICK W. Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies[J]. J Am Chem Soc,2003,125(34):10288−10300. doi: 10.1021/ja0357689
    [22] MAKOWSKI S J, PIA K S, WOLFGANG S. Formation of a hydrogen-bonded heptazine framework by self-assembly of melem into a hexagonal channel structure[J]. Chem-Eur J,2012,18(11):3248−3257. doi: 10.1002/chem.201103527
    [23] 陈圣军, 钮腾飞, 倪邦庆. 介孔氮化碳光催化氧化苄基卤化物的反应研究[J/OL]. 合成化学: 1-12[2020-10-12]. https://doi.org/10.15952/j.cnki.cjsc.1005-1511.20001.
    [24] CHEN W, ZHONG L X, PENG X W, SUN R C, LU F C. Chemical fixation of carbon dioxide using a green and efficient catalytic system based on sugarcane bagasse-an agricultural waste[J]. ACS Sustainable Chem Eng,2015,3(1):147−152. doi: 10.1021/sc5006445
    [25] LIANG H G, WANG J W, LI Q F, LIANG C, FENG Y L, KANG M Q. Supported ZnBr2 and carbon nitride bifunctional complex catalysts for the efficient cycloaddition of CO2 with diglycidyl ethers[J]. New J Chem,2018,42(19):16127−37. doi: 10.1039/C8NJ03499K
    [26] KE J X, LI X Y, WANG F, JIANG S, KANG M Q, WANG J W, LI Q F, WANG Z J. Non-isocyanate polyurethane/epoxy hybrid materials with different and controlled architectures prepared from a CO2-sourced monomer and epoxy via an environmentally-friendly route[J]. Rsc Adv,2017,7(46):28841−52. doi: 10.1039/C7RA04215A
    [27] LIANG H G, WANG J W, WANG F, FENG Y L, KANG M Q, WANG Z J. An efficient heterogeneous LiBr/-Al2O3 catalyst for the cycloaddition of CO2 with diglycidyl ethers[J]. J Chem Technol Biot,2018,93(8):2271−80. doi: 10.1002/jctb.5570
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  378
  • HTML全文浏览量:  398
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-14
  • 修回日期:  2020-11-25
  • 网络出版日期:  2021-03-19
  • 刊出日期:  2021-03-19

目录

    /

    返回文章
    返回