留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HNO3改性促进活性炭低温脱硝机理的研究

郭倩倩 景文 侯亚芹 刘勇进 李风海 黄张根

郭倩倩, 景文, 侯亚芹, 刘勇进, 李风海, 黄张根. HNO3改性促进活性炭低温脱硝机理的研究[J]. 燃料化学学报(中英文), 2021, 49(3): 387-394. doi: 10.19906/j.cnki.JFCT.2021027
引用本文: 郭倩倩, 景文, 侯亚芹, 刘勇进, 李风海, 黄张根. HNO3改性促进活性炭低温脱硝机理的研究[J]. 燃料化学学报(中英文), 2021, 49(3): 387-394. doi: 10.19906/j.cnki.JFCT.2021027
GUO Qian-qian, JING Wen, HOU Ya-qin, LIU Yong-jin, LI Feng-hai, HUANG Zhang-gen. Effects of HNO3 modification on the mechanism of low temperature NO reduction over activated carbon[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 387-394. doi: 10.19906/j.cnki.JFCT.2021027
Citation: GUO Qian-qian, JING Wen, HOU Ya-qin, LIU Yong-jin, LI Feng-hai, HUANG Zhang-gen. Effects of HNO3 modification on the mechanism of low temperature NO reduction over activated carbon[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 387-394. doi: 10.19906/j.cnki.JFCT.2021027

HNO3改性促进活性炭低温脱硝机理的研究

doi: 10.19906/j.cnki.JFCT.2021027
基金项目: 科技部重点研发计划(2017YFC0210203),国家自然科学基金(21902173,21978314)和山西省重点研发计划(201703D11101804)的资助
详细信息
    通讯作者:

    Tel:+86 351 4043727, E-mail:zghuang@sxicc.ac.cn

  • 中图分类号: X511

Effects of HNO3 modification on the mechanism of low temperature NO reduction over activated carbon

Funds: The project was supported by National Key Research and Development Program (2017YFC0210203), National Natural Science Foundation of China (21902173 and 21978314), and the Key Research and Development Program of Shanxi Province (201703D11101804).
  • 摘要: 为了研究HNO3改性对活性炭(AC)低温脱硝机理的影响,采用HNO3在不同温度下对AC进行改性处理,改性前后样品在30−250 ℃进行脱硝活性测试,通过程序升温脱附(TPD)和瞬态响应实验对脱硝机理进行分析。结果表明,AC上NO转化率随反应温度升高逐渐降低再趋于稳定,反应物的吸附是速率控制步骤。含氧基团增加促进了NH3的吸附,但这部分吸附态NH3在30 ℃时几乎不参与反应,随反应温度升高不同程度活化,在30−90 ℃反应物的吸附是速率控制步骤,90 ℃后吸附态NH3的活化是速率控制步骤。
  • 图  1  NO转化率随反应温度的变化

    Figure  1  Variation of NO conversion with reaction temperature over AC

    图  2  AC (a)和ACN80 (b)不同温度下NOx的脱附量

    Figure  2  Amount of NOx desorbed on AC (a) and ACN80 (b) at various temperatures

    图  3  AC和ACN80不同温度下NH3的脱附量

    Figure  3  Amount of NH3 desorbed on AC and ACN80 at various temperatures

    图  4  ACN80在30 ℃不同反应条件下NH3的脱附曲线

    Figure  4  TPD profiles of NH3 after co-adsorption of NH3 and O2 and NO reduction with NH3 over ACN80 at 30 ℃

    图  5  30 ℃下NO (a)和NH3 (b)瞬态响应实验

    Figure  5  Results of transient response experiments of NO (a) and NH3 (b) at 30 ℃

    图  6  150 ℃下NO (a)和NH3 (b)瞬态响应实验

    Figure  6  Results of transient response experiments of NO (a) and NH3 (b) over AC and ACN80 at 150 ℃

    表  1  活性测试反应条件

    Table  1  Reaction conditions for activity test

    UnitRange
    NO15×10−4
    NH315×10−4
    O214%
    N2balance
    Total flow ratemL/min400
    Temperature30−250
    下载: 导出CSV
  • [1] 梁彦正, 王学涛, 张乾蔚, 罗绍峰, 周瑜枫. 双金属Ce-Mn/ZSM-5催化剂的制备及NH3-SCR脱硝性能研究[J]. 燃料化学学报,2020,48(2):205−212. doi: 10.3969/j.issn.0253-2409.2020.02.010

    LIANG Yan-zheng, WANG Xue-tao, ZHANG Qian-wei, LUO Shao-feng, ZHOU Yu-feng. Study on the preparation and catalytic performance of bimetallic Ce-Mn /ZSM-5 catalyst for selective catalytic reduction of nitric oxide by NH3[J]. J Fuel Chem Technol,2020,48(2):205−212. doi: 10.3969/j.issn.0253-2409.2020.02.010
    [2] YULIANG W, KETING G, XIANGXIANG L, HUI L, SHAOCHEN G, DONGDONG R. Performance of Mn-Ce co-doped siderite catalysts in the selective catalytic reduction of NOx by NH3[J]. J Fuel Chem Technol,2019,47(12):1495−1502. doi: 10.1016/S1872-5813(19)30061-1
    [3] LI S, WANG X, TAN S, SHI Y, LI W. CrO3 supported on sargassum-based activated carbon as low temperature catalysts for the selective catalytic reduction of NO with NH3[J]. Fuel,2017,191:511−517. doi: 10.1016/j.fuel.2016.11.095
    [4] 杨辉, 刘豪, 朱德力, 王泽安, 邱建荣, 曾汉才. 活性炭纤维联合脱硫脱硝的机理分析[J]. 中国电机工程学报,2015,35:2495−2503.

    YANG Hui, LIU Hao, ZHU De-li, WANG Ze-an, QIU Jian-rong, ZENG Han-cai. Mechanism of Combined Removal of SO2 and NO Over Activated Carbon Fibers[J]. Proc CSEE,2015,35:2495−2503.
    [5] YAN W, LI S, FAN C, DENG S. Effect of surface carbon-oxygen complexes during NO reduction by coal char[J]. Fuel,2017,204:40−46. doi: 10.1016/j.fuel.2017.05.045
    [6] 步学朋, 徐振刚, 李文华, 梁大明, 孙仲超, 李雪飞, 熊银伍, 吴涛, 李兰廷, 张科达. 中国活性焦烟气净化研究分析[J]. 煤质技术,2010,16(2):67−71. doi: 10.3969/j.issn.1007-7677.2010.01.027

    BU Xue-peng, XU Zhen-gang, LI Wen-hua, LIANG Da-ming, SUN Zhong-chao, LI Xue-fei, XIONG Yin-wu, WU Tao, LI Lan-ting, ZHANG Ke-da. Study and analysis on flue gas purification of active coke in China[J]. Coal Qual Technol,2010,16(2):67−71. doi: 10.3969/j.issn.1007-7677.2010.01.027
    [7] YOU F, YU G, XING Z, LI J, XIE S, LI C, WANG G, REN H, WANG Y. Enhancement of NO catalytic oxidation on activated carbon at room temperature by nitric acid hydrothermal treatment[J]. Appl Surf Sci,2019,471:633−644. doi: 10.1016/j.apsusc.2018.12.066
    [8] JIANG L, LIU Q, RAN G, KONG M, REN S, YANG J, LI J. V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO[J]. Chem Eng J,2019,370:810−821. doi: 10.1016/j.cej.2019.03.225
    [9] LIN Y, LI Y, XU Z, XIONG J, ZHU T. Transformation of functional groups in the reduction of NO with NH3 over nitrogen-enriched activated carbons[J]. Fuel,2018,223:312−323. doi: 10.1016/j.fuel.2018.01.092
    [10] ZHU L, HUANG B, WANG W, WEI Z, YE D. Low-temperature SCR of NO with NH3 over CeO2 supported on modified activated carbon fibers[J]. Catal Commun,2011,12(6):394−398. doi: 10.1016/j.catcom.2010.10.028
    [11] GUO Q, JING W, HOU Y, HUANG Z, MA G, HAN X, SUN D. On the nature of oxygen groups for NH3-SCR of NO over carbon at low temperatures[J]. Chem Eng J,2015,270:41−49. doi: 10.1016/j.cej.2015.01.086
    [12] HUANG C C, LI H S, CHEN C H. Effect of surface acidic oxides of activated carbon on adsorption of ammonia[J]. J Hazard Mater,2008,159(2/3):523−527. doi: 10.1016/j.jhazmat.2008.02.051
    [13] LE LEUCH L M, BANDOSZ T J. The role of water and surface acidity on the reactive adsorption of ammonia on modified activated carbons[J]. Carbon,2007,45(3):568−578. doi: 10.1016/j.carbon.2006.10.016
    [14] ZHANG W J, RABIEI S, BAGREEV A, ZHUANG M S, RASOULI F. Study of NO adsorption on activated carbons[J]. Appl Catal B: Environ,2008,83(1/2):63−71. doi: 10.1016/j.apcatb.2008.02.003
    [15] ATKINSON J D, ZHANG Z, YAN Z, ROOD M J. Evolution and impact of acidic oxygen functional groups on activated carbon fiber cloth during NO oxidation[J]. Carbon,2013,54:444−453. doi: 10.1016/j.carbon.2012.11.060
    [16] LAZARO M, GALVEZ M, RUIZ C, JUAN R, MOLINER R. Vanadium loaded carbon-based catalysts for the reduction of nitric oxide[J]. Appl Catal B: Environ,2006,68(3/4):130−138. doi: 10.1016/j.apcatb.2006.07.025
    [17] ZHU Z, LIU Z, LIU S, NIU H, HU T, LIU T, XIE Y. NO reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures[J]. Appl Catal B: Environ,2000,26:25−35. doi: 10.1016/S0926-3373(99)00144-7
    [18] ZHU Z, LIU Z, LIU S, NIU H. Adsorption and reduction of NO over activated coke at low temperatures[J]. Fuel,2000,79:651−658. doi: 10.1016/S0016-2361(99)00192-1
    [19] GÁLVEZ M E, LÁZARO M J, MOLINER R. Novel activated carbon-based catalyst for the selective catalytic reduction of nitrogen oxide[J]. Catal Today,2005,102−103:142−147. doi: 10.1016/j.cattod.2005.02.020
    [20] MOCHIDAA I, SHIRAHAMAA N, KAWANOA S, KORAIA Y, YASUTAKEB A, TANOURAC M, FUJIIC S, YOSHIKAWAD M. NO oxidation over activated carbon fiber (ACF). Part 1. Extended kinetics over a pitch based ACF of very large surface area[J]. Fuel,2000,79:1713−1723. doi: 10.1016/S0016-2361(00)00034-X
    [21] BUSCAA G, LIETTIB L, RAMISA G, BERTIC F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Appl Catal B: Environ,1998,18:1−36. doi: 10.1016/S0926-3373(98)00040-X
    [22] 吴孝敏, 倪凯文, 宇小龙, 赵宁. 暴露CeO2不同晶面的VOx-MnOx/CeO2催化剂低温NH3-SCR脱硝的原位红外研究[J]. 燃料化学学报,2020,48:179−188. doi: 10.3969/j.issn.0253-2409.2020.02.007

    WU Xiao-min, NI Kai-wen, YU Xiao-long, ZHAO Ning. In-situ DRIFTs study on different exposed facets of VOx-MnOx/CeO2 catalysts for low-temperature NH3-SCR[J]. J Fuel Chem Technol,2020,48:179−188. doi: 10.3969/j.issn.0253-2409.2020.02.007
    [23] LEI Z, HAN B, YANG K, CHEN B. Influence of H2O on the low-temperature NH3-SCR of NO over V2O5/AC catalyst: An experimental and modeling study[J]. Chem Eng J,2013,215−216:651−657. doi: 10.1016/j.cej.2012.11.011
    [24] FU M, LI C, LU P, QU L, ZHANG M, ZHOU Y, YU M, FANG Y. A review on selective catalytic reduction of NOx by supported catalysts at 100-300 °C-catalysts, mechanism, kinetics[J]. Catal Sci Technol,2014,4(1):14−25. doi: 10.1039/C3CY00414G
    [25] CAO F, XIANG J, SU S, WANG P, SUN L, HU S, LEI S. The activity and characterization of MnOx-CeO2-ZrO2/γ-Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3[J]. Chem Eng J,2014,243:347−354. doi: 10.1016/j.cej.2014.01.034
    [26] TENG H, TU Y T, LAI Y C, LIN C C. Reduction of NO with NH3 over carbon catalysts: The effects of treating carbon with H2SO4 and HNO3[J]. Carbon,2001,39:575−582. doi: 10.1016/S0008-6223(00)00171-8
    [27] SUN D, LIU Q, LIU Z, GUI G, HUANG Z. Adsorption and oxidation of NH3 over V2O5/AC surface[J]. Appl Catal B: Environ,2009,92:462−467. doi: 10.1016/j.apcatb.2009.09.005
    [28] 张强, 刘璐, 于梦云, 周洲. 氧化铝载体硫酸化对锰铈催化剂SCR脱硝性能的影响[J]. 燃料化学学报,2019,47(9):1137−1145. doi: 10.3969/j.issn.0253-2409.2019.09.014

    ZHANG Qiang, LIU Lu, YU Meng-yun, ZHOU Zhou. Effect of sulfuric acid modification of Al2O3 support on the SCR performance of MnCe/Al2O3 catalysts[J]. J Fuel Chem Technol,2019,47(9):1137−1145. doi: 10.3969/j.issn.0253-2409.2019.09.014
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  62
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-30
  • 修回日期:  2020-11-29
  • 网络出版日期:  2021-03-19
  • 刊出日期:  2021-03-19

目录

    /

    返回文章
    返回