留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯高压热解及其反应机理研究

顾菁 程磊磊 王亚琢 张原翔 袁浩然

顾菁, 程磊磊, 王亚琢, 张原翔, 袁浩然. 聚乙烯高压热解及其反应机理研究[J]. 燃料化学学报(中英文), 2021, 49(3): 395-406. doi: 10.19906/j.cnki.JFCT.2021028
引用本文: 顾菁, 程磊磊, 王亚琢, 张原翔, 袁浩然. 聚乙烯高压热解及其反应机理研究[J]. 燃料化学学报(中英文), 2021, 49(3): 395-406. doi: 10.19906/j.cnki.JFCT.2021028
GU Jing, CHENG Lei-lei, WANG Ya-zhuo, ZHANG Yuan-xiang, YUAN Hao-ran. High-pressure pyrolysis and its mechanism of polyethylene[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 395-406. doi: 10.19906/j.cnki.JFCT.2021028
Citation: GU Jing, CHENG Lei-lei, WANG Ya-zhuo, ZHANG Yuan-xiang, YUAN Hao-ran. High-pressure pyrolysis and its mechanism of polyethylene[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 395-406. doi: 10.19906/j.cnki.JFCT.2021028

聚乙烯高压热解及其反应机理研究

doi: 10.19906/j.cnki.JFCT.2021028
基金项目: 国家重点研发计划项目(2018YFC1901200),国家自然科学基金(51976223)和南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0101)资助
详细信息
    通讯作者:

    E-mail: yuanhaoran81@gmail.com

  • 中图分类号: X705

High-pressure pyrolysis and its mechanism of polyethylene

Funds: The project was supported by the National Key Research and Development Program of China (2018YFC1901200), National Natural Science Foundation of China (51976223) and Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0101).
  • 摘要: 塑料废弃物数量日益增加,实现低能耗、高值化利用是促进塑料废弃物回收利用的关键。在380 ℃设定温度和(1−5) ×105 Pa初始压力条件下分别开展聚乙烯高压热裂解和催化热解实验,记录反应过程温度曲线,分析聚乙烯高压热裂解/催化热解产物分布。研究结果表明,反应过程中反应物相态是影响热解反应历程的重要因素;因反应路径而异,压力变化对聚乙烯热裂解和催化热解产生不同程度的影响。聚乙烯高压热裂解实验过程中存在飞温现象,飞温峰值随初始压力的增加呈现单调增加的趋势;峰值温度的升高带来聚乙烯断链程度的加深,即获得更多小分子量产物。在相同设定温度和初始压力条件下的聚乙烯高压催化热解实验中不存在飞温现象,利用锌负载的ZSM-5催化剂实现聚乙烯高选择性制备芳香烃,液体产物中单环芳烃占比达82.53%,积炭产率在1.5%以下。
  • 图  1  聚乙烯高压热解实验装置

    Figure  1  Polyethylene high-pressure pyrolysis experimental device

    1: nitrogen cylinder; 2: reducing valve; 3: gas inlet valve; 4: cylinder; 5: heater assembly; 6: gas release valve; 7: magnetic agitator; 8: pressure gage; 9: reactor controller; 10: computer; 11: gas collecting unit

    图  2  聚乙烯高压热裂解((a)−(e))和高压催化热解过程(f)温度曲线

    Figure  2  Temperature curves of polyethylene high-pressure pyrolysis ((a)−(e)) and high-pressure catalytic pyrolysis (f) processes

    图  3  聚乙烯高压热裂解(a)和催化热解(b)实验产物产率

    Figure  3  The product yields of polyethylene high-pressure pyrolysis (a) and catalytic pyrolysis (b) experiments

    图  4  聚乙烯热裂解液体产物GC-MS色谱图(npa:正构烷烃,ol:α-烯烃)

    Figure  4  GC-MS chromatograms of liquid products obtained from the thermal cracking of polyethylene (npa: n-paraffins, ol: α-olefins)

    图  5  聚乙烯催化热解液体产物GC-MS色谱图

    Figure  5  GC-MS chromatograms of liquid products obtained from the catalytic pyrolysis of polyethylene

    图  6  聚乙烯高压热裂解(a)和催化热解(b)过程机理图

    Figure  6  Reaction mechanism of polyethylene high-pressure thermal cracking (a) and catalytic pyrolysis (b)

    表  1  实验原料的LDPE特性

    Table  1  Property of LDPE feedstock

    FormPowder
    Molar massaverage Mn ~ 1700 by GPC
    average Mw ~ 4000 by GPC
    Viscosity1.5 Poise (25 ℃, Brookfield Thermosel) (lit.)
    Melting point92 ℃
    Acid number<0.05 mg KOH/g
    Transition tempsoftening point 106 ℃ (ring and ball)
    Density0.92 g/mL at 25 ℃
    下载: 导出CSV

    表  2  实验原料LDPE元素分析

    Table  2  Ultimate analysis of LDPE feedstock

    Raw materialUltimate analysis w/%
    CHNSO
    LDPE85.2214.08000
    下载: 导出CSV

    表  3  聚乙烯高压热裂解/催化热解过程参数

    Table  3  Process parameters of polyethylene high-pressure pyrolysis and high-pressure catalytic pyrolysis

    EntryStarting value of thermal runaway/℃Peak temperature
    /℃
    Peak pressure/
    105 Pa
    Final pressure at room temperature/105 PaPartial pressure of gaseous product at room temperature/105 Pa
    P-1~293417.89.543
    P-2~303427.01553
    P-3~303437.6186.53.5
    P-4~305450.0227.53.5
    P-5~311452.32494
    C-1380.334.51211
    C-2381.9391311
    C-3383.343.513.510.5
    C-4383.1501511
    C-5381.05216.511.5
    下载: 导出CSV

    表  4  聚乙烯高压热裂解气体产物组分分布

    Table  4  Gas products distribution obtained from the high-pressure pyrolysis of LDPE

    RunsP-1P-2P-3P-4P-5
    Hydrogen3.845.045.887.548.61
    Methane24.2625.6926.7426.2829.00
    Ethane19.0120.5320.6221.3121.44
    Ethylene7.267.438.537.697.59
    Propane18.2316.2615.3716.1214.12
    Propene15.2514.1914.1213.1411.67
    C4 alkanes5.665.204.093.573.63
    C4 olefins5.564.853.753.643.11
    C5+ hydrocarbons0.940.810.910.710.83
    note: the temperature set in the above table is 380 ℃; X in the label “P-X ” is the initial pressure value
    下载: 导出CSV

    表  5  聚乙烯高压热裂解液体产物组分分布

    Table  5  Liquid products distribution obtained from the high-pressure pyrolysis of LDPE

    RunsP-1P-2P-3P-4P-5
    n-Paraffins67.5966.3765.1865.2564.14
    Isoparaffins0.380.951.141.18
    Cycloparaffins5.735.765.676.278.59
    α-olefins24.5922.9721.4819.5718.01
    Cycloolefins1.562.583.413.27
    Other olefins2.092.232.492.192.54
    Aromatics0.731.652.172.27
    Average carbon number14.1213.5712.8411.1611.05
    note: the temperature set in the above table is 380 ℃; X in the label “P-X ” is the initial pressure value
    下载: 导出CSV

    表  6  聚乙烯催化热解气体产物组分分布

    Table  6  Gas products distribution obtained from the catalytic pyrolysis of LDPE

    RunsC-1C-2C-3C-4C-5
    Hydrogen26.2724.9823.5119.8220.26
    Methane6.826.295.376.035.88
    Ethane4.834.925.155.085.39
    Ethylene4.253.492.492.091.96
    Propane32.0234.8236.8539.7739.37
    Propylene7.585.284.263.923.00
    Butane5.186.266.447.097.26
    Isobutane7.179.1810.4911.5211.56
    C4 olefins3.362.472.761.792.26
    C5+ hydrocarbons2.522.312.682.893.06
    note: the temperature set in the above table is 380 ℃; X in the label “P-X ” is the initial pressure value
    下载: 导出CSV

    表  7  聚乙烯催化热解液体产物组分分布

    Table  7  Liquid products distribution obtained from the catalytic pyrolysis of LDPE

    RunsC-1C-2C-3C-4C-5
    Aromatics84.5183.1083.2581.5479.21
    Benzene5.624.845.324.284.36
    Toluene25.0424.1622.1020.7520.89
    Ethylbenzene4.634.534.464.394.40
    Xylene24.7825.6424.9725.3624.58
    Other MAHs22.4621.8724.2524.7523.29
    PAHs1.982.062.152.011.69
    Other hydrocarbons15.4916.9016.7518.4620.79
    n-Paraffins6.546.327.016.957.91
    Isoparaffins4.805.216.045.967.01
    Olefins0.740.830.981.261.44
    Cycloparaffins3.214.492.723.614.00
    Cycloolefins0.200.050.000.680.43
    note: the temperature set in the above table is 380 ℃; X in the label “P-X ” is the initial pressure value
    下载: 导出CSV
  • [1] 汪刚, 余广炜, 谢胜禹, 江汝清, 汪印. 添加不同塑料与污泥混合热解对生物炭中重金属的影响[J]. 燃料化学学报,2019,47(5):611−620. doi: 10.3969/j.issn.0253-2409.2019.05.013

    WANG Gang, YU Guang-wei, XIE Sheng-yu, JIANG Ru-qing, WANG Yin. Effect of co-pyrolysis of different plastics with sewage sludge on heavy metals in the biochar[J]. J Fuel Chem Technol,2019,47(5):611−620. doi: 10.3969/j.issn.0253-2409.2019.05.013
    [2] GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Sci Adv,2017,3(7):5.
    [3] MOHANRAJ C, SENTHILKUMAR T, CHANDRASEKAR M. A review on conversion techniques of liquid fuel from waste plastic materials[J]. Int J Energy Res,2017,41(11):1534−1552. doi: 10.1002/er.3720
    [4] KUMAR A, VON WOLFF N, RAUCH M, ZOU Y-Q, SHMUL G, BEN-DAVID Y, LEITUS G, AVRAM L, MILSTEIN D. Hydrogenative Depolymerization of Nylons[J]. JACS,2020,142(33):14267−14275. doi: 10.1021/jacs.0c05675
    [5] KRATISH Y, LI J, LIU S, GAO Y, MARKS T J. Polyethylene terephthalate deconstruction catalyzed by a carbon-supported single-Site molybdenum-dioxo complex [J]. Angew Chem Int Ed, 2020.
    [6] TENNAKOON A, WU X, PATERSON A L, PATNAIK S, PEI Y, LAPOINTE A M, AMMAL S C, HACKLER R A, HEYDEN A, SLOWING I I, COATES G W, DELFERRO M, PETERS B, HUANG W, SADOW A D, PERRAS F A. Catalytic upcycling of high-density polyethylene via a processive mechanism[J]. Nat Catal, 2020.
    [7] GU F, GUO J F, ZHANG W J, SUMMERS P A, HALL P. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study[J]. Sci Total Environ,2017,601:1192−1207.
    [8] VASILE C, BREBU M A, KARAYILDIRIM T, YANIK J, DARIE H. Feedstock recycling from plastics and thermosets fractions of used computers. II. Pyrolysis oil upgrading[J]. Fuel,2007,86(4):477−485. doi: 10.1016/j.fuel.2006.08.010
    [9] RAGAERT K, DELVA L, VAN GEEM K. Mechanical and chemical recycling of solid plastic waste[J]. Waste Management,2017,69:24−58. doi: 10.1016/j.wasman.2017.07.044
    [10] BAENA-GONZáLEZ J, SANTAMARIA-ECHART A, AGUIRRE J L, GONZÁLEZ S. Chemical recycling of plastic waste: Bitumen, solvents, and polystyrene from pyrolysis oil[J]. Waste Management,2020,118:139−149. doi: 10.1016/j.wasman.2020.08.035
    [11] ACHILIAS D S, ROUPAKIAS C, MEGALOKONOMOS P, LAPPAS A A, ANTONAKOU Ε V. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP)[J]. J Hazard Mater,2007,149(3):536−542. doi: 10.1016/j.jhazmat.2007.06.076
    [12] GRAUSE G. Resource control by a sustainability based currency equivalent[J]. J Clean Prod,2018,200:533−541. doi: 10.1016/j.jclepro.2018.07.297
    [13] 孙锴, 王琬丽, 黄群星. 典型杂质掺混对废塑料热解油特性的影响[J]. 化工进展, 2020, 1-11.

    SUN Kai, WANG Wan-li, HUANG Qun-xing. Effect of typical impurities on the pyrolysis oil of waste plastics[J]. Chem Ind Eng Pro (China), 2020, 1-11.
    [14] 孙艺蕾, 马跃, 李术元, 岳长涛. 聚烯烃塑料的热解和催化热解研究进展[J]. 化工进展, 2020, 1-21.

    SUN Yi-lei, MA Yue, LI Shu-yuan, YUE Chang-tao. Research progress in the pyrolysis and catalytic pyrolysis of waste polyolefin plastics[J]. Chem. Ind. & Eng. Pro. (China), 2020, 1-21.
    [15] AL-SALEM S M, ANTELAVA A, CONSTANTINOU A, MANOS G, DUTTA A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW)[J]. J Environ Manage,2017,197:177−98. doi: 10.1016/j.jenvman.2017.03.084
    [16] WONG S L, NGADI N, ABDULLAH T A T, INUWA I M. Current state and future prospects of plastic waste as source of fuel: A review[J]. Renewable Sustainable Energy Rev,2015,50:1167−80. doi: 10.1016/j.rser.2015.04.063
    [17] MURATA K, SATO K, SAKATA Y. Effect of pressure on thermal degradation of polyethylene[J]. J Anal Appl Pyrolysis, 2004, 71(2): 569-89.
    [18] KUMARI A, KUMAR S. Pyrolytic degradation of polyethylene in autoclave under high pressure to obtain fuel[J]. J Anal Appl Pyrolysis,2017,124:298−302. doi: 10.1016/j.jaap.2017.01.020
    [19] ONWUDILI J A, INSURA N, WILLIAMS P T. Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time[J]. J Anal Appl Pyrolysis,2009,86(2):293−303. doi: 10.1016/j.jaap.2009.07.008
    [20] CHENG L, GU J, WANG Y, ZHANG J, YUAN H, CHEN Y. Polyethylene high-pressure pyrolysis: Better product distribution and process mechanism analysis[J]. Chem Eng J,2020,385:123866. doi: 10.1016/j.cej.2019.123866
    [21] LOK C M, VAN DOORN J, ARANDA ALMANSA G. Promoted ZSM-5 catalysts for the production of bio-aromatics, a review[J]. Renew Sustainable Energy Rev,2019,113:109248. doi: 10.1016/j.rser.2019.109248
    [22] LÓPEZ A, DE MARCO I, CABALLERO B M, LARESGOITI M F, ADRADOS A. Influence of time and temperature on pyrolysis of plastic wastes in a semi-batch reactor[J]. Chem Eng J,2011,173(1):62−71. doi: 10.1016/j.cej.2011.07.037
    [23] MOSIO-MOSIEWSKI J, WARZALA M, MORAWSKI I, DOBRZANSKI T. High-pressure catalytic and thermal cracking of polyethylene[J]. Fuel Process Technol,2007,88(4):359−364. doi: 10.1016/j.fuproc.2006.10.009
    [24] SANTOS E, RIJO B, LEMOS F, LEMOS M A N D A. A catalytic reactive distillation approach to high density polyethylene pyrolysis – Part 2 – Middle olefin production[J]. Catal Today,2020,.
    [25] AKUBO K, NAHIL M A, WILLIAMS P T. Aromatic fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts[J]. J Energy Inst,2019,92(1):195−202. doi: 10.1016/j.joei.2017.10.009
    [26] SUN K, HUANG Q, CHI Y, YAN J. Effect of ZnCl2-activated biochar on catalytic pyrolysis of mixed waste plastics for producing aromatic-enriched oil[J]. Waste Management,2018,81:128−137. doi: 10.1016/j.wasman.2018.09.054
    [27] SADRAMELI S M. Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review I: Thermal cracking review[J]. Fuel,2015,140:102−115. doi: 10.1016/j.fuel.2014.09.034
    [28] SERRANO D P, AGUADO J, ESCOLA J M. Developing advanced catalysts for the conversion of polyolefinic waste plastics into fuels and chemicals[J]. ACS Catal,2012,2(9):1924−1941. doi: 10.1021/cs3003403
    [29] 李传强, 刘思媛, 王东升, 刘书彬, 郑旭煦, 袁小亚. 压力反应釜中低温热裂解废旧LLDPE塑料制备PE蜡[J]. 化工学报,2019,70(12):4856−4863.

    LI Chuan-qiang, LIU Si-yuan, WANG dong-sheng, LIU Shu-bin, ZHENG Xu-xu, YUAN Xiao-ya. Preparation of PE wax by pyrolysis of LLDPE waste plastic in a pressure reactor under low temperature[J]. CIESC J,2019,70(12):4856−4863.
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  825
  • HTML全文浏览量:  334
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-21
  • 修回日期:  2020-11-27
  • 网络出版日期:  2021-03-19
  • 刊出日期:  2021-03-19

目录

    /

    返回文章
    返回