留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温等离子体作用下亮氨酸转化路径的密度泛函理论研究

李月慧 李先春 孟繁锐 王晴 王焕然 葛玉洁

李月慧, 李先春, 孟繁锐, 王晴, 王焕然, 葛玉洁. 低温等离子体作用下亮氨酸转化路径的密度泛函理论研究[J]. 燃料化学学报(中英文), 2021, 49(2): 247-256. doi: 10.19906/j.cnki.JFCT.2021038
引用本文: 李月慧, 李先春, 孟繁锐, 王晴, 王焕然, 葛玉洁. 低温等离子体作用下亮氨酸转化路径的密度泛函理论研究[J]. 燃料化学学报(中英文), 2021, 49(2): 247-256. doi: 10.19906/j.cnki.JFCT.2021038
LI Yue-hui, LI Xian-chun, MENG Fan-rui, WANG Qing, WANG Huan-ran, GE Yu-jie. Density functional theory study on the conversion path of leucine by non-thermal plasma[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 247-256. doi: 10.19906/j.cnki.JFCT.2021038
Citation: LI Yue-hui, LI Xian-chun, MENG Fan-rui, WANG Qing, WANG Huan-ran, GE Yu-jie. Density functional theory study on the conversion path of leucine by non-thermal plasma[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 247-256. doi: 10.19906/j.cnki.JFCT.2021038

低温等离子体作用下亮氨酸转化路径的密度泛函理论研究

doi: 10.19906/j.cnki.JFCT.2021038
基金项目: 国家重点联合基金项目(U1910215)资助
详细信息
    作者简介:

    李先春:Tel:15141212188,Email:xianchunli@ustl.edu.cn

    通讯作者:

    E-mail:xianchunli@ustl.edu.cn

  • 中图分类号: X705

Density functional theory study on the conversion path of leucine by non-thermal plasma

Funds: The project was supported by the National Kay Joint Foundation of China (U1910215)
  • 摘要: 目前低温等离子体技术在处理固体废弃物方面已得到广泛关注,本研究基于密度泛函理论(DFT),在B3LYP/6-31G (d, p) 的水平上模拟计算了污泥中蛋白质模型化合物亮氨酸(LEU)在低温等离子体中的转化路径,包括脱氨优先机理、脱羧优先机理、其余C−C键断裂优先机理等七条主要路径。结果表明,亮氨酸易脱除氨基、羧基生成C5H10,再进一步分解成小分子烃。产物CO2来自羧基;生成CO的反应势垒相对较高,但CO2易在等离子体中被电离成CO从而提高CO的产量;小自由基的相互结合及其他小分子的分解生成CH4和H2。所有路径所需的能量均在低温等离子体高能电子能量的最大值范围内。
  • 图  1  亮氨酸的初步分解路径及其分子构型

    (a): deamination priority mechanisms; (b): decarboxylation priority mechanisms; (c): the remaining C−C bond breaking priority mechanisms

    Figure  1  Leucine preliminary decomposition pathway and its molecular configuration

    图  2  反应过程中键的演化

    Figure  2  Evolution of the selected bonds in the reaction

    图  3  脱NH3优先机理反应路径

    Figure  3  Reaction pathway of NH3 removal priority mechanism

    图  4  C5H9OH反应路径

    Figure  4  Reaction pathway of C5H9OH

    图  5  脱NH2·优先机理反应路径

    Figure  5  Reaction pathway of NH2·removal priority mechanism

    图  6  1-C6H11O2·和2-C6H11O2·的前线轨道

    Figure  6  Front-line orbits of 1-C6H11O2·and 2-C6H11O2·

    图  7  脱CO2优先机理反应路径

    Figure  7  Pathway of CO2 removal priority mechanism

    图  8  脱COOH·优先机理反应路径

    Figure  8  Pathway of COOH·removal priority mechanism

    图  9  C5H10反应路径

    Figure  9  Reaction pathway of C5H9 decomposition

    图  10  C5H9·, C4H6·反应路径

    Figure  10  Reaction pathway of C5H9·, C4H6·

    图  11  脱CH3·优先机理反应路径

    Figure  11  Reaction pathway of CH3·removal priority mechanism

    图  12  C1,2键优先断裂反应路径

    Figure  12  Reaction pathway of C1, 2 bond priority break

    图  13  CH3NO的反应路径

    Figure  13  Reaction pathway of CH3NO decomposition

    图  14  C4H10的反应路径

    Figure  14  Reaction pathway of C4H10

    图  15  i-C3H7的反应路径

    Figure  15  Reaction pathway of i-C3H7

    图  16  C(1)−H(9)和C(7)−H(9)键演变与能量关系

    Figure  16  Relationship between C(1)−H(9) and C(7)−H(9) bond evolution and the located energy

    图  17  C2−4键断裂优先机理反应路径

    Figure  17  Reaction pathway of C2−4 bond break in priority

    图  18  亮氨酸的反应路径图

    Figure  18  Reaction pathway of leucine

    表  1  生成小分子烃的反应焓

    Table  1  Reaction enthalpies of the formation of Small molecule hydrocarbon

    ReactionsThis work/(kJ·mol−1)References/(kJ·mol−1)
    CH3. + H.→CH4−430.9−434.7[22],−438.5[31]a
    C2H3. + H.→C2H4−459.9−453.5[22],−454.8[32]a
    CH3. + CH3.→C2H6−349.5−361.1[22],−366.1[33]a
    C2H5. + H.→C2H6−421.7−414.2[22],−410.9[31]a
    a: experiment result
    下载: 导出CSV
  • [1] 卢平, 解佳乐, 张雪伟, 王佳熠, 冯朝钰, 宋昕, 布雨魏. O2/CO2气氛下污泥/煤混燃中半挥发性重金属的释放特性[J]. 燃料化学学报,2020,48(5):533−542. doi: 10.3969/j.issn.0253-2409.2020.05.003

    LU Ping, XIE Jia-le, ZHANG Xue-wei, WANG Jia-yi, FENG Zhao-yu, SONG Xin, BU Yu-wei. Release characteristics of semi-volatile heavy metals from sludge/coal mixed combustion in O2/CO2 atmosphere[J]. J Fuel Chem Technol,2020,48(5):533−542. doi: 10.3969/j.issn.0253-2409.2020.05.003
    [2] KOENIG A, KAY J N, WAN I M. Physical properties of dewatered wastewater sludge for landfilling[J]. Water Sci Technol,1996,34(3):533−540.
    [3] 刘伟. 污水污泥气化特性研究[D]. 杭州: 浙江大学, 2011.

    LIU Wei. Study on characteristics of sewage sludge gasification[D]. Hangzhou: Zhejiang University, 2011.
    [4] 李凡, 朱丽华, 徐峰. 介质阻挡放电等离子体甲烷/水蒸气重整制氢[J]. 燃料化学学报,2019,47(5):566−573. doi: 10.3969/j.issn.0253-2409.2019.05.007

    LI Fan, ZHU Li-hua, XU Feng. Dielectric barrier discharge plasma methane/steam reforming hydrogen production[J]. J Fuel Chem Technol,2019,47(5):566−573. doi: 10.3969/j.issn.0253-2409.2019.05.007
    [5] DU C M, WU J. , Ma D Y, LIU Y, QIU P P, QIU R L, LIAO S S, GAO D. Gasification of corn cob using non-thermal arc plasma[J]. Int J Hydrog Energy,2015,40(37):12634−12649. doi: 10.1016/j.ijhydene.2015.07.111
    [6] 孙世翼. 放电等离子体强化处理污泥减量及重金属去除[D]. 兰州: 西北师范大学, 2018.

    SUN Shi-yi. Discharge plasma enhanced treatment sludge reduction and heavy metal removal[D]. Lanzhou: Northwest Normal University, 2018.
    [7] CHEN S S, DONG B, DAI X H, WANG H Y, LI N, YANG D H. Effects of thermal hydrolysis on the metabolism of amino acids in sewage sludge in anaerobic digestion[J]. Waste Manage,2019,88:309−318. doi: 10.1016/j.wasman.2019.03.060
    [8] 郑燕, 李明, 朱锡锋. 城市污水污泥催化快速热解制备芳香烃和烯烃[J]. 化工学报,2016,67(11):4802−4807.

    ZHENG Yan, LI Ming, ZHU Xi-feng. Aromatics and olefines were prepared by fast catalytic pyrolysis of municipal sewage sludge[J]. CIESC Jo,2016,67(11):4802−4807.
    [9] PENG C, ZHAI Y B, HORNUNG A, WANG B, LI S H, WANG T F, LI C T, ZHU Y. In-depth comparison of morphology, microstructure, and pathway of char derived from sewage sludge and relevant model compounds[J]. Waste Management,2020,102:432−440. doi: 10.1016/j.wasman.2019.11.007
    [10] AZADI P, AFIF E, FOROUHI H, DAI T S, AZADI F. , FARNOOD R. Catalytic reforming of activated sludge model compounds in supercritical water using nickel and ruthenium catalysts[J]. Appl Catal B: Environ.,2013,134-135:265−273. doi: 10.1016/j.apcatb.2013.01.022
    [11] WANG C Y, FAN Y J, HORNUNG U, ZHU W, DANMEN N. Char and tar formation during hydrothermal treatment of sewage sludge in subcritical and supercritical water: Effect of organic matter composition and experiments with model compounds[J]. J Clean Prod,2020,242:1−9.
    [12] WEI F, CAO J P, ZHAO X Y, REN J, GU B, WEI X Y. Formation of aromatics and removal of nitrogen in catalytic fast pyrolysis of sewage sludge: A study of sewage sludge and model amino acids[J]. Fuel,2018,218:148−154. doi: 10.1016/j.fuel.2018.01.025
    [13] SUBRAHMANYAM P V R, SASTRY C A, RAO A V S P, PILLAI S C. Amino acids in sewage sludges[J]. J Water Pollut Control Fed,1960,32(4):344−350.
    [14] 张军. 微波热解污水污泥过程中氮转化途径及调控策略[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    ZHANG Jun. Nitrogen conversion pathways and control strategies in the process of microwave pyrolysis of sewage sludge[D]. Harbin: Harbin Institute of Technology, 2013.
    [15] LI J, WANG Z Y, YANG X, HU L, LIU Y W, WANG C X. Decomposing or subliming? An investigation of thermal behavior of l-leucine[J]. Thermochim Acta,2006,447(2):147−153. doi: 10.1016/j.tca.2006.05.004
    [16] ZHAO S H, BI X L, SUN R Y, NIU M M, PAN X J. Density functional theory and experimental study of cellulose initial degradation stage under inert and oxidative atmosphere[J]. J Mol Struct,2020,1204:1−10.
    [17] YANG X X, FU Z W, HAN D D, ZHAO Y Y, LI R, WU Y L. Unveiling the pyrolysis mechanisms of cellulose: Experimental and theoretical studies[J]. Renewable Energy,2020,147:1120−1130. doi: 10.1016/j.renene.2019.09.069
    [18] ZHANG Y Y, LIU C, XIE H. Mechanism studies on β-d-glucopyranose pyrolysis by density functional theory methods[J]. J Anal Appl Pyrolysis,2014,105:23−34. doi: 10.1016/j.jaap.2013.09.016
    [19] HUANG X Y, CHENG D G, CHEN F Q, ZHAN X L. A density functional theory study on the decomposition of aliphatic hydrocarbons and cycloalkanes during coal pyrolysis in hydrogen plasma[J]. J Energy Chem,2015,24(1):65−71. doi: 10.1016/S2095-4956(15)60285-6
    [20] 黄金保, 武书彬, 雷鸣, 程皓, 梁嘉晋, 童红. 木质素二聚体模型化合物热解机理的量子化学研究[J]. 燃料化学学报,2015,43(11):1334−1343. doi: 10.3969/j.issn.0253-2409.2015.11.008

    HUANG Jin-bao, WU Shu-bin, LEI Ming, CHENG Hao, LIANG Jia-jin, TONG Hong. Quantum chemistry study on the pyrolysis mechanism of lignin dimer model compounds[J]. J Fuel Chem Technol,2015,43(11):1334−1343. doi: 10.3969/j.issn.0253-2409.2015.11.008
    [21] 程小彩, 黄金保, 潘贵英, 童红, 蔡勋明. 聚苯乙烯热降解机理的理论研究[J]. 燃料化学学报,2019,47(7):884−896. doi: 10.3969/j.issn.0253-2409.2019.07.014

    CHENG Xiao-cai, HUANG Jin-bao, PAN Gui-ying, TONG Hong, CAI Xun-ming. Theoretical study on the thermal degradation mechanism of polystyrene[J]. J Fuel Chem Technol,2019,47(7):884−896. doi: 10.3969/j.issn.0253-2409.2019.07.014
    [22] HUANG X Y, GU J M, CHENG D G, CHEN F Q, ZHAN X L. Pathways of liquefied petroleum gas pyrolysis in hydrogen plasma: A density functional theory study[J]. J Energy Chem,2013,22(3):484−492. doi: 10.1016/S2095-4956(13)60063-7
    [23] CHEN L, CHENG D G, CHEN F Q, ZHAN X L. A density functional theory study on the conversion of polycyclic aromatic hydrocarbons in hydrogen plasma[J]. Int J Hydrog Energy,2020,45(1):309−321. doi: 10.1016/j.ijhydene.2019.10.208
    [24] 黄金保, 刘朝, 任丽蓉, 童红, 李伟民, 伍丹. 木质素模化物紫丁香酚热解机理的量子化学研究[J]. 燃料化学学报,2013,41(6):657−666.

    HUANG Jin-bao, LIU Chao, REN Li-rong, TONG Hong, LI Wei-min, WU Dan. Studies on pyrolysis mechanism of syringol as lignin model compound by quantum chemistry[J]. J Fuel Chem Technol,2013,41(6):657−666.
    [25] HUANG X Y, CHENG D G, CHEN F Q, ZHAN X L. The decomposition of aromatic hydrocarbons during coal pyrolysis in hydrogen plasma: A density functional theory study[J]. Int J Hydrog Energy,2012,37(23):18040−18049. doi: 10.1016/j.ijhydene.2012.09.006
    [26] 段毓, 程皓, 武书彬. 基于密度泛函理论研究木质素二聚体Cα-OH基团的修饰对其热解均裂历程的影响[J]. 燃料化学学报,2019,47(12):1440−1448. doi: 10.3969/j.issn.0253-2409.2019.12.004

    DUAN Yu, CHENG Hao, WU Shu-bin. Study on the effect of modification of Cα-OH group of lignin dimer on its pyrolysis homocracking process based on density functional theory[J]. J Fuel Chem Technol,2019,47(12):1440−1448. doi: 10.3969/j.issn.0253-2409.2019.12.004
    [27] MUDEDLA S K, KUMAR C V S, SURESH A, BASKAR P, DASH P S, SUBRAMANIAN V. Water catalyzed pyrolysis of oxygen functional groups of coal: A density functional theory investigation[J]. Fuel,2018,233:328−335. doi: 10.1016/j.fuel.2018.06.057
    [28] HUANG J B, LIU C, TONG H, LI W M, WU D. A density functional theory study on formation mechanism of CO, CO2 and CH4 in pyrolysis of lignin[J]. Comput Theor Chem,2014,1045:1−9. doi: 10.1016/j.comptc.2014.06.009
    [29] 张晓星, 胡雄雄, 肖焓艳. 介质阻挡放电等离子体降解SF6的实验与仿真研究[J]. 中国电机工程学报,2017,37(8):2455−2465.

    ZHANG Xiao-xing, HU Xiong-xiong, XIAO Han-yan. Experimental and simulation study of SF6 degradation by dielectric barrier discharge plasma[J]. Proc CSEE,2017,37(8):2455−2465.
    [30] SIMMONDS P G, MEDLEY E E, RATCLIFF M A, Jr, SHULMAN G P. Thermal decomposition of aliphatic monoamino-monocar boxylic acids[J]. Anal Chem,1972,44(12):2060−2066. doi: 10.1021/ac60320a040
    [31] DEAN, A. M. Predictions of pressure and temperature effects upon radical addition and recombination reactions[J]. J. Phys. Chem. A,1985,89(21):4600−4608. doi: 10.1021/j100267a038
    [32] WESTBROOK C K, DRYER F L, SCHUG K P. Comprehensive mechanism for the pyrolysis and oxidation of ethylene[J]. Symp Combustion,1982,19(1):153−166. doi: 10.1016/S0082-0784(82)80187-2
    [33] TOWFIGHI J, NIAEI A, KARIMZADEH R, SAEDI G. Systematics and modelling representations of LPG thermal cracking for olefin production[J]. Korean J Chem Eng,2006,23(1):8−16. doi: 10.1007/BF02705685
    [34] 王丽. 等离子体催化氨分解制氢的协同效应研究[D]. 大连: 大连理工大学, 2013.

    WANG Li. Study on the synergistic effect of plasma-catalyzed ammonia decomposition for hydrogen production[D]. Dalian: Dalian University of Technology, 2013.
    [35] 刘广益. 污泥催化热解制取烃类化合物及转化途径研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    LIU Guang-yi. Research on catalytic pyrolysis of sludge to produce hydrocarbon compounds and conversion route[D]. Harbin: Harbin Institute of Technology, 2016.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  352
  • HTML全文浏览量:  143
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-10
  • 修回日期:  2020-11-20
  • 刊出日期:  2021-02-08

目录

    /

    返回文章
    返回