留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能超级电容器用废液基多孔炭球的制备和性能研究

吴燕 曹景沛 周志 庄奇琪 韦宇檑 赵小燕

吴燕, 曹景沛, 周志, 庄奇琪, 韦宇檑, 赵小燕. 高性能超级电容器用废液基多孔炭球的制备和性能研究[J]. 燃料化学学报(中英文), 2021, 49(4): 537-545. doi: 10.19906/j.cnki.JFCT.2021044
引用本文: 吴燕, 曹景沛, 周志, 庄奇琪, 韦宇檑, 赵小燕. 高性能超级电容器用废液基多孔炭球的制备和性能研究[J]. 燃料化学学报(中英文), 2021, 49(4): 537-545. doi: 10.19906/j.cnki.JFCT.2021044
WU Yan, CAO Jing-pei, ZHOU Zhi, ZHUANG Qi-qi, WEI Yu-lei, ZHAO Xiao-yan. High-performance supercapacitors of porous carbon spheres synthesis from waste liquid[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 537-545. doi: 10.19906/j.cnki.JFCT.2021044
Citation: WU Yan, CAO Jing-pei, ZHOU Zhi, ZHUANG Qi-qi, WEI Yu-lei, ZHAO Xiao-yan. High-performance supercapacitors of porous carbon spheres synthesis from waste liquid[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 537-545. doi: 10.19906/j.cnki.JFCT.2021044

高性能超级电容器用废液基多孔炭球的制备和性能研究

doi: 10.19906/j.cnki.JFCT.2021044
基金项目: 国家自然科学基金(21978317),江苏省自然科学基金杰出青年基金(BK20200028)和中国矿业大学重大项目培育专项基金(2019ZDPY19)资助
详细信息
    作者简介:

    吴燕:17712965571@163.com

    通讯作者:

    Tel: +86-516-83591059, E-mail:caojingpei@cumt.edu.cn

  • 中图分类号: TQ530

High-performance supercapacitors of porous carbon spheres synthesis from waste liquid

Funds: The project was supported by the National Natural Science Foundation of China (21978317), the National Natural Science Foundation of Jiangsu Province (BK20200028), the Fundamental Research Funds for the Central Universities (China University of Mining & Technology, 2019ZDPY19)
  • 摘要: 具有几何构型的球状结构可以减小电解质离子的传输距离,开发高比表面积、球形结构和制备工艺简单的多孔炭球,对于储能器件十分重要。以生产维生素C过程中产生的废液为原料,利用高温水热炭化和高铁酸钾(K2FeO4)为活化剂制备多孔炭球,并且详细研究了K2FeO4的量对所制备的多孔炭球的电化学性能影响。结果表明,所制备的样品呈现出球形结构且具有分级孔隙度(丰富的微孔和一定的中孔)的孔结构。在以6 mol/L KOH为电解液的三电极体系中,K2FeO4与焦质量比为2所得的多孔炭球(PCS-2)具有高的比表面积以及良好的电化学性能,在电流密度为0.5 A/g时,比电容高达323 F/g。以1-乙基-3-甲基咪唑四氟硼酸盐离子液体为电解液的对称型超级电容器中,K2FeO4与焦质量比为3所得的多孔炭球(PCS-3)能量密度高达47.2 W·h/kg,而且经过10000次循环后比电容保持率为89%。
  • FIG. 618.  FIG. 618.

    FIG. 618.  FIG. 618.

    图  1  多孔炭球的(a)N2吸附-脱附等温线和(b)孔径分布

    Figure  1  (a) Nitrogen adsorption-desorption isotherms and (b) pore size distributions of PCS-R

    图  2  多孔炭球的(a)XRD谱图,(b)拉曼光谱谱图和(c)PCS-2的XPS的O 1s谱图

    Figure  2  (a) XRD patterns, (b) Raman spectra of PCS-R and (c) O 1s of PCS-2

    图  3  (a)HC的SEM照片和(b)PCS-2的SEM照片

    Figure  3  SEM images of (a) HC and (b) PCS-2

    图  4  PCS-R电极在三电极体系中的电化学性质:(a)5 A/g下的恒电流充放电曲线,(b)扫描速率5 mV/s下的循环伏安曲线,(c)不同电流密度下的比电容和(d)PCS-2电极在不同电流密度下的恒电流充放电曲线

    Figure  4  Electrochemical performances of PCS-R in a three-electrode system. (a) galvanostatic charge-discharge curves at 5 A/g, (b) cyclic voltammetry curves at 5 mV/s, (c) specific capacitances of PCS-R at different current densities and (d) galvanostatic charge-discharge curves of PCS-2 at various current densities

    图  5  PCS-R电极在两电极体系中的电化学性质:(a)扫描速率为5 mV/s下不同电压窗口的循环伏安曲线,(b)5 mV/s下的循环伏安曲线,(c)200 mV/s下的循环伏安曲线,(d)PCS-R在不同电流密度下的比电容,(e)PCS-R在电流密度为0.5 A/g下的恒电流充放电曲线和(f)PCS-R的交流阻抗谱图

    Figure  5  Electrochemical performances of PCS-R in a two-electrode system. (a) cyclic voltammetry curves at a scan rate of 5 mV/s under various voltage windows, (b) and (c) cyclic voltammetry curves at a scan rate of 5 mV/s and 200 mV/s, respectively, (d) comparison of specific capacitance at various current densities, (e) galvanostatic charging-discharging curves at a current density of 0.5 A/g and (f) Nyquist plots of the assembled devices

    图  6  PCS-3电极的电化学性能:(a)不同电流密度下的恒电流充放电曲线,(b)不同扫描速率下的循环伏安曲线,(c)能量密度图和(d)PCS-3电极在5 A/g电流密度下的循环性能

    Figure  6  Electrochemical performances of PCS-3 in a two-electrode system in EMIMBF4 electrolyte. (a) galvanostatic charge-discharge curves of the devices PSC-3 at various current density, (b) cyclic voltammetry curves at various scan rates from 5 to 200 mV/s, (c) ragone plot and (d) cycling performance

    表  1  多孔炭球的孔结构参数

    Table  1  Pore structure parameters of PCS-R

    SampleSBET/(m2·g−1)vt/(cm3·g−1)dave/nmSmicro/(m2·g−1)Sext/(m2·g−1)vmicro/(cm3·g−1)vext/(cm3·g−1)v1−2/(cm3·g−1)v2−5/(cm3·g−1)w/%
    PCS-112190.601.961123960.440.160.0150.005238.8
    PCS-214100.882.4911742360.490.390.0820.02335.2
    PCS-312041.043.469242800.400.630.0730.03430.5
    PCS-411460.863.009591870.410.450.0740.03327.4
    note: SBET: specific surface area from multiple BET method; vt: total pore volume; dave: average pore diameter; Smicro and vmicro: micropore surface area and micropore volume from t-plot method, respectively; Sext and vext: the surface area and volume except the micropore surface area and micropore volume, respectively; v1−2 and v2−5: the pore volume of the pore size in the range of 1−2 nm and 2−5 nm are calculated based on DFT method, respectively; w: yield of activation
    下载: 导出CSV

    表  2  多孔炭球的元素分析

    Table  2  Ultimate analysis of PCS-R

    SampleUltimate analysis wdaf/%
    CHNOa
    PCS-189.21.31.77.8
    PCS-288.51.41.98.2
    PCS-388.11.41.98.6
    PCS-487.31.52.09.2
    a: by difference
    下载: 导出CSV
  • [1] WU Y, CAO J P., ZHAO X Y., HAO Z Q, ZHUANG Q Q, ZHU J S, WANG X Y, WEI X Y. Preparation of porous carbons by hydrothermal carbonization and KOH activation of lignite and their performance for electric double layer capacitor[J]. Electrochim Acta,2017,252:397−407. doi: 10.1016/j.electacta.2017.08.176
    [2] 秦富伟, 王相龙, 李怡招. 分级多孔炭的制备及其作为超级电容器电极材料的研究进展[J]. 功能材料,2020,9(51):9045−9055.

    QIN Fu-wei, WANG Xiang-long, LI Yi-zhao. Advances in preparation of hierarchical porous carbons and their application in supercapacitors[J]. J Funct Mater,2020,9(51):9045−9055.
    [3] 黄珊珊, 赵小燕, 谢凤梅, 曹景沛, 魏贤勇, 宝田恭之. 双电层电容器用新型无灰煤(HyperCoal)基活性炭的制备[J]. 燃料化学学报,2014,42(5):539−544.

    HUANG Shan-shan, ZHAO Xiao-yan, XIE Feng-mei, CAO Jing-pei, WEI Xian-yong, TAKARADA Takayuki. Preparation of HyperCoal-based activated carbons for electric double layer capacitor[J]. J Fuel Chem Technol,2014,42(5):539−544.
    [4] 侯朝霞, 屈晨滢, 李建君. 基于超级电容器的多孔电极材料研究进展[J]. 功能材料,2020,2(51):2032−2038.

    HOU Zhao-xia, QU Chen-ying, LI Jian-jun. Research progress of porous electrode materials based onsupercapacitors[J]. J Funct Mater,2020,2(51):2032−2038.
    [5] LIU K L, YU C, GUO W, NI L, YU J H, XIE Y Y, WANG Z, REN Y W, QIU J S. Recent research advances of self-discharge in supercapacitors: Mechanisms and suppressing strategies[J]. J Energy Chem,2021,58:94−109. doi: 10.1016/j.jechem.2020.09.041
    [6] TANG J, WANG J, SHRESTHA L K, HOSSAIN M S A, ALOTHMAN Z A, YAMAUCHI Y, ARIGA K. Activated porous carbon spheres with customized mesopores through assembly of diblock copolymers for electrochemical capacitor[J]. ACS Appl Mater Interf,2017,9:18986−18993. doi: 10.1021/acsami.7b04967
    [7] LI X C, ZHANG L, HE G H. Fe3O4 doped double-shelled hollow carbon spheres with hierarchical pore network for durable high-performance supercapacitor[J]. Carbon,2016,99:514−522. doi: 10.1016/j.carbon.2015.12.076
    [8] 付兴平, 金少强, 陈培珍, 杨自涛. 含氧纳米多孔碳球的制备及其在超级电容器中的应用[J]. 化工新型材料,2019,47(5):46−50.

    FU Xing-ping, JIN Shao-qiang, CHEN Pei-zhen, YANG Zi-tao. Synthesis of oxygen-doped NCSs for electrochemical supercapacitor[J]. New Chem Mater,2019,47(5):46−50.
    [9] 钟文斌, 高月. 功能化多孔碳纳米球的制备及电化学性能[J]. 湖南大学学报(自然科学版),2018,45(6):56−61.

    ZHONG Wen-bin, GAO Yue. Preparation and electrochemical performance of functionalized porous carbon nanospheres[J]. J Hunan Univ (Nat Sci),2018,45(6):56−61.
    [10] 屈永浩, 张志杰, 陈菲菲, 李庆余, 黄有国, 王红强. 玉米淀粉基碳微球的制备及电化学性能的研究[J]. 化工新型材料,2019,47(3):84−87.

    QU Yong-hao, ZHANG Zhi-jie, CHE Fei-fei, LI Qing-yu, HUANG You-guo, WANG Hong-qiang. Preparetion and electrochemical performance of corn starch-based carbon microsphere[J]. New Chem Mater,2019,47(3):84−87.
    [11] DONG J X, LI S J, DING Y. Anchoring nickel-cobalt sulfide nanoparticles on carbon aerogel derived from waste watermelon rind for high-performance asymmetric supercapacitors[J]. J Alloys Compd,2020,845:155701. doi: 10.1016/j.jallcom.2020.155701
    [12] HOU L J, HU Z A, WANG X T, QIANG L L, ZHOU Y, LV L W, LI S S. Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors[J]. J Colloid Interf Sci,2019,540:88−96. doi: 10.1016/j.jcis.2018.12.029
    [13] GONG Y N, LI D L, LUO C Z, FU Q, PAN C X. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors[J]. Green Chem,2017,19:4132−4140. doi: 10.1039/C7GC01681F
    [14] YANG S, WANG S L, LIU X, LI L. Biomass derived interconnected hierarchical micro-meso-macro- porous carbon with ultrahigh capacitance for supercapacitors[J]. Carbon,2019,147:540−549. doi: 10.1016/j.carbon.2019.03.023
    [15] 何孝军, 李晓静, 王晓婷, 赵楠, 余谟鑫, 吴明铂. 由煤沥青高效制备高性能超级电容器用多孔炭[J]. 新型炭材料,2014,29(6):493−502. doi: 10.1016/S1872-5805(14)60150-5

    HE Xiao-jun, LI Xiao-jing, WANG Xiao-ting, ZHAO Nan, YU Mo-xin, WU Ming-bo. Efficient preparation of porous carbons from coal tar pitch for high performance supercapacitors[J]. New Carbon Mater,2014,29(6):493−502. doi: 10.1016/S1872-5805(14)60150-5
    [16] WANG J, CHEN M M, WANG C Y, WANG J Z, ZHENG J M. Preparation of mesoporous carbons from amphiphilic carbonaceous material for high-performance electric double-layer capacitors[J]. J Power Sources,2011,196:550−558. doi: 10.1016/j.jpowsour.2010.07.030
    [17] ZHAO G Y, CHEN C, YU D F, SUN L, YANG C H, ZHANG H, SUN Y, BESENBACHER F, YU M. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors[J]. Nano Energy,2018,47:547−555. doi: 10.1016/j.nanoen.2018.03.016
    [18] DING B B, HUANG S S, PANG K, DUAN Y X, ZHANG J M. Nitrogen-enriched carbon nanofiber aerogels derived from marine chitin for energy storage and environmental remediation[J]. ACS Sustainable Chem Eng,2017,6:177−185.
    [19] LI J, LIU W L, XIAO D, WANG X H. Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor[J]. Appl Surf Sci,2017,416:918−924. doi: 10.1016/j.apsusc.2017.04.162
    [20] HAO Z Q, CAO J P, WU Y, ZHAO X Y, ZHUANG Q Q, WANG X Y, WEI X Y. Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor[J]. J Power Sources,2017,361:249−258. doi: 10.1016/j.jpowsour.2017.06.086
    [21] AYDINCAK K, YUMAK T, SINAĞ A, ESEN B. Synthesis and characterization of carbonaceous materials from saccharides (glucose and lactose) and two waste biomasses by hydrothermal csarbonization[J]. Ind Eng Chem Res,2012,51:9145−9152. doi: 10.1021/ie301236h
    [22] SUN X M, LI Y D. Hollow carbonaceous capsules from glucose solution[J]. J. Colloid Interf Sci,2005,291:7−12. doi: 10.1016/j.jcis.2005.04.101
    [23] SEVILLA M, FUERTES A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chem Eur J,2009,15:4195−4203. doi: 10.1002/chem.200802097
    [24] ZHONG M J, KIM E K, MCGANN J P, CHUN S E, WHITACRE J F, JARONIEC M, MATYJASZEWSKI K, KOWALEWSKI T. Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer[J]. J Am Chem Soc,2012,134:14846−14857. doi: 10.1021/ja304352n
    [25] QIAN W J, SUN F X, XU Y H, QIU L H, LIU C H, WANG S D, YAN F. Human hair-derived carbon flakes for electrochemical supercapacitors[J]. Energ Environ Sci,2014,7:379−386. doi: 10.1039/C3EE43111H
    [26] ELMOUWAHIDI A, BAILÓN-GARCÍA E, PÉREZ-CADENAS A F, MALDONADO-HÓDAR F J, CARRASCO-MARÍN F. Activated carbons from KOH and H3PO4-activation of olive residues and its application as supercapacitor electrodes[J]. Electrochim Acta,2017,229:219−228. doi: 10.1016/j.electacta.2017.01.152
    [27] LI Y B, ZHANG D Y, ZHANG Y M, HE J J, WANG Y L, WANG K J, XU Y T, LI H X, WANG Y. Biomass-derived microporous carbon with large micropore size for high-performance supercapacitors[J]. J Power Sources,2020,448:227396. doi: 10.1016/j.jpowsour.2019.227396
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1978
  • HTML全文浏览量:  58
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-26
  • 修回日期:  2021-01-23
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回