留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

萃取剂组成和结构对煤直接液化油渣萃取行为的影响

黄剑波 刘洋 闫伦靖 廖俊杰 常丽萍 王建成

黄剑波, 刘洋, 闫伦靖, 廖俊杰, 常丽萍, 王建成. 萃取剂组成和结构对煤直接液化油渣萃取行为的影响[J]. 燃料化学学报(中英文), 2021, 49(8): 1077-1085. doi: 10.19906/j.cnki.JFCT.2021048
引用本文: 黄剑波, 刘洋, 闫伦靖, 廖俊杰, 常丽萍, 王建成. 萃取剂组成和结构对煤直接液化油渣萃取行为的影响[J]. 燃料化学学报(中英文), 2021, 49(8): 1077-1085. doi: 10.19906/j.cnki.JFCT.2021048
HUANG Jian-bo, LIU Yang, YAN Lun-jing, LIAO Jun-jie, CHANG Li-ping, WANG Jian-cheng. Influences of the composition and structure of extractants on their extraction behavior for coal direct liquefaction residue[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1077-1085. doi: 10.19906/j.cnki.JFCT.2021048
Citation: HUANG Jian-bo, LIU Yang, YAN Lun-jing, LIAO Jun-jie, CHANG Li-ping, WANG Jian-cheng. Influences of the composition and structure of extractants on their extraction behavior for coal direct liquefaction residue[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1077-1085. doi: 10.19906/j.cnki.JFCT.2021048

萃取剂组成和结构对煤直接液化油渣萃取行为的影响

doi: 10.19906/j.cnki.JFCT.2021048
基金项目: 国家能源集团2030先导项目(GJNY2030XDXM-19-17),山西省面上自然基金(201901D111119)和山西省高等学校科技创新项目资助
详细信息
    通讯作者:

    Tel: 86+13834629730, E-mail: wangjiancheng@tyut.edu.cn

  • 中图分类号: TQ536.4

Influences of the composition and structure of extractants on their extraction behavior for coal direct liquefaction residue

Funds: The project was supported by National Energy Group 2030 Pilot Project (GJNY2030XDXM-19-17), Natural Science Foundation of Shanxi Province (201901D111119) and Science and Technology Innovation Project of Higher Education in Shanxi Province
  • 摘要: 煤直接液化过程会产生约占投煤量30%的煤液化油渣,利用萃取手段可将其中的多环芳烃类物质提取出来,制备高价值的炭材料。本文总结了萃取剂的组成结构对煤液化油渣萃取率及萃取产物性质的影响。含有芳环结构或氮氧杂环的萃取剂萃取率可达50%以上。烷烃类有机萃取剂的萃取物主要包含2–4环缩合芳香结构,拥有较低的分子量和杂原子含量。含杂原子有机萃取剂的萃取物主要包含4–7环缩合芳香结构,其分子量大且富含氮、氧、硫等杂原子,C/H原子比较高。吡啶基离子液体萃取物的C/H原子比和芳香度较高;有机酸根基离子液体萃取物的灰分含量较低。使用煤液化油或煤焦油馏分油为萃取剂时,萃取率可达60%,具有工业化应用的前景。
  • FIG. 832.  FIG. 832.

    FIG. 832.  FIG. 832.

    图  1  重质油(上)及沥青烯(下)的分子结构示意图[6, 7]

    Figure  1  Molecular structure diagram of heavy oil (top) and asphaltene (bottom)

    图  2  油渣萃取率随萃取剂溶解度参数的变化[15]

    Figure  2  Extraction rate of residue varies with the solubility parameter of the extractant

    图  3  烃类萃取剂和含杂原子萃取剂对煤液化油渣萃取率的影响

    Figure  3  Effects of hydrocarbon solvents and heteroatomic solvents on the extraction rate of coal liquefaction residue

    图  4  纯萃取剂及复配后萃取剂对煤液化油渣萃取率的影响

    Figure  4  Effect of single solvent and blended solvents on extraction rate of coal liquefaction residue

    图  5  煤液化油和煤焦油馏分油对煤液化油渣萃取率的影响[37-39]

    Figure  5  Effects of coal liquified oil and coal-tar distillate on extraction rate of coal liquefaction residue

    图  6  几种离子液体的化学结构式以及命名[42-44]

    Figure  6  Chemical structure and naming of several ionic liquids

    图  7  离子液体对煤液化油渣萃取率的影响[42-44]

    Figure  7  Effects of ionic liquids on extraction rate of coal liquefaction residue

    表  1  单种有机萃取剂萃取产物的性质

    Table  1  Extraction properties of single organic solvent

    ExtractantProperties of extraction products
    aromatic ring numbermolecular massheteroatomic contentatomic ratio of C/H
    Alkane solvents2–4300–500less1–1.2
    Heteroatom-containing solvents4–7~500more~1.6
    下载: 导出CSV

    表  2  液化油渣种类、萃取方式和萃取条件

    Table  2  Types of DCLR, extraction methods and extraction conditions

    ExtractantTypes of DCLRExtraction methodTemperatureTimeSolvent/DCLR ratio
    PE[30]Shenmu-Fugu coal liquefaction residueSoxhlet extractionslightly above
    boiling point
    20 h200 mL/g
    n-hexane[30]
    Cyclohexane[30]
    Tetrahydronaphthalene[15]Shenhua coal liquefaction residueSoxhlet extractionnear boiling point48 h
    Epoxypropane[15]
    Cyclohexanone[15]
    Ethanediamine[15]
    Furfural[15]
    Methylbenzene[21]Shenhua coal liquefaction residuesupercritical extraction325 °C30 minmass ratio 6:1
    Dimethylamine[25]Shenmu-Fugu coal liquefaction residueultrasonic extraction25 °C48 min39 mL/g
    Dimethyl ether[23]Shenhua coal liquefaction residuebackflow37 °C40 min70 mL/g
    Pyridine[24]Shenhua coal liquefaction residuestirringroom temperature1 h400 mL/100 g
    DMF[14]Shendong coal liquefaction residueSoxhlet extraction120 °C1 hvolume ratio 3:1
    CS2[22]Shengli coal liquefaction residueSoxhlet extractionnear boiling point
    Acetone[26]Shenmu-Fugu coal liquefaction residueultrasonic extractionroom temperature15 min200 mL/g
    Isopropanol[26]
    下载: 导出CSV

    表  3  煤液化油和煤焦油馏分油的性质

    Table  3  Properties of coal liquified oil and coal tar distillate oil

    ExtractantShenhua
    naphtha
    Shengli middle
    distillate
    Coking
    phenol oil
    Coking
    naphthalene oil
    Coking
    wash oil
    Coking
    anthracene oil
    Density/(g·cm−3)0.86270.92290.94981.0451.0561.080
    Boiling range/°CIBP-220220−26080−207210−310246−298198−400
    下载: 导出CSV

    表  4  离子液体萃取产物性质

    Table  4  Properties of ionic liquids extraction products

    ExtractantsProperties of extraction products
    C/H atomic ratiomolecular
    mass
    aromaticityash
    content/%
    [bmim]FeCl4[43]1.32112620.741.54
    [bPy]FeCl4[43]1.43113970.751.25
    [emim]DEP[44]1.215530.640.32
    [MTEtA]DMP[44]1.245400.640.01
    [TEtA][OP][42]1.266610.640
    [mim][Ba][42]1.306540.660
    [MPy][Of][42]1.316090.670
    [MPy][Ba][42]1.465630.690
    下载: 导出CSV
  • [1] HIRANO K. Outline of NEDOL coal liquefaction process development (pilot plant program)[J]. Fuel Process Technol,2000,62(2):109−118.
    [2] 胡发亭, 田青运. 煤液化残渣性质及应用研究进展[J]. 洁净煤技术,2007,13(4):21−24.

    HU Fa-ting, TIAN Qing-yun. The research development on residual’s characteristics and applications of coal liquefaction[J]. Clean Coal Technol,2007,13(4):21−24.
    [3] MOCHIDA I, OKUMA O, YOON S H. Chemicals from direct coal liquefaction[J]. Chem Rev,2014,114(3):1637−1672. doi: 10.1021/cr4002885
    [4] 张雅婕, 薛永兵, 刘振民. 煤直接液化残渣性能及应用的研究进展[J]. 洁净煤技术, 2020, in press.

    ZHANG Ya-jie, XUE Yong-bing, LIU Zhen-min. Research progress on the properties and applications of direct liquefaction residue of coal[J]. Clean Coal Technol, 2020, in press.
    [5] KANG Y H, WEI X Y, LIU G H, MU M, MA X R, GAO Y, ZONG Z M. CO2-hierarchical activated carbon prepared from coal gasification residue: Adsorption equilibrium, isotherm, kinetic and thermodynamic studies for methylene blue removal[J]. Chin J Chem Eng,2020,28(6):1694−1700. doi: 10.1016/j.cjche.2019.12.017
    [6] 谷小会, 周铭, 史士东. 神华煤直接液化残渣中重质油组分的分子结构[J]. 煤炭学报,2006,31(1):76−80.

    GU Xiao-hui, ZHOU Ming, SHI Shi-dong. The molecular structure of heavy oil fraction from the Shenhua coal direct liquefaction residue[J]. J China Coal Soc,2006,31(1):76−80.
    [7] 谷小会, 史士东, 周铭. 神华煤直接液化残渣中沥青烯组分的分子结构研究[J]. 煤炭学报,2006,31(6):785−789.

    GU Xiao-hui, SHI Shi-dong, ZHOU Ming. Study on the molecular structure of asphaltene fraction from the Shenhua coal direct liquefaction residue[J]. J China Coal Soc,2006,31(6):785−789.
    [8] DING M J, ZONG Z M, ZONG Y, OUYANG X D, HUANG Y G, ZHOU L, WANG F, CAO J P, WEI X Y. Isolation and identification of fatty acid amides from shengli coal[J]. Energy Fuels,2008,22(4):2419−2421. doi: 10.1021/ef700499y
    [9] WEI X Y, NI Z H, XIONG Y C, ZONG Z M, WANG X H, CAI C W, JI Y F, XIE K C. Pd/C-catalyzed release of organonitrogen compounds from bituminous coals[J]. Energy Fuels,2002,16(2):527−528. doi: 10.1021/ef010219e
    [10] ZHAO X Y, ZONG Z M, CAO J P, MA Y M, HAN L, LIU G F, ZHAO W, LI W Y, XIE K C, BAI X F. Difference in chemical composition of carbon disulfide-extractable fraction between vitrinite and inertinite from Shenfu-Dongsheng and Pingshuo coals[J]. Fuel,2008,87(4/5):565−575. doi: 10.1016/j.fuel.2007.02.021
    [11] 坚一明, 李显, 朱贤青, 芦田隆一, WORASUWANNARAK N, 胡振中, 罗光前. 低阶煤与生物质在热溶剂提质萃取过程中的相互作用[J]. 燃料化学学报,2019,47(1):25−33.

    SHU Yi-ming, LI Xian, ZHU Xian-qing, ASHIDA R, WORASUWANNARAK N, HU Zhen-zhong, LUO Guang-qian. Interaction between low-rank coal and biomass during degradative solvent extraction[J]. J Fuel Chem Technol,2019,47(1):25−33.
    [12] HANSEN, CHRALES M. The universality of the solubility parameter[J]. Ind Eng Chem Res,1969,8(1):2−11. doi: 10.1021/i360029a002
    [13] 张琪. 马西拉原油, 卡宾达原油和大庆原油的强化蒸馏研究[D]. 上海: 华东理工大学, 2005.

    ZHANG Qi. Study on the intensified distillation of Masilla Crude Oil, Cabinda Crude Oil and Daqing Crude Oil[D]. Shanghai: East China University of Science and Technology, 2005.
    [14] 盛英. 煤液化残留物溶剂萃取及其萃取物的特性研究[D]. 北京: 煤炭科学研究总院, 2009.

    SHENG Ying. The research of coal liquefaction residue solvent extraction and the characteristics of the extract[D]. Beijing: China Coal Research Institute, 2009.
    [15] 范芸珠. 煤直接液化残渣性质及应用的探索性研究[D]. 上海: 华东理工大学, 2010.

    FAN Yun-zhu. Exploratory study on the properties and application of coal direct liquefaction residue[D]. Shanghai: East China University of Science and Technology, 2010.
    [16] 张晓云, 王飞, 李国省, 樊星, 于亚如, 赵云鹏, 魏贤勇, 马凤云, 余果. 煤中有机质可溶组分分子特征的聚类分析[J]. 分析化学,2019,47(1):108−114.

    ZHANG Xiao-yun, WANG Fei, LI Guo-sheng, FAN Xing, YU Ya-ru, ZHAO Yun-peng, WEI Xian-yong MA Feng-yun, YU Guo. Cluster analysis of molecular characteristics for soluble organic matter in coals[J]. Chin J Anal Chem,2019,47(1):108−114.
    [17] LI P, QIAO T X, LU X N. A fast and efficient way for recovering organic carbon resources from a coal byproduct: separation and structural evaluation[J]. Sep Sci Technol,2020,56(11):1965−1983.
    [18] LI P, ZONG Z M, WEI X Y, Wang Y G, FAN G X. Structural features of liquefaction residue from Shenmu-Fugu subbituminous coal[J]. Fuel,2019,242:819−827. doi: 10.1016/j.fuel.2019.01.004
    [19] CONG X S, LI M, LIU C L, WANG D F, XIAO R R, BIE F S, JV C X, QI X, LV F K, WEI X Y. Unambiguous Evidence for the Occurrence of Pentamethylphenol in Lignite Methanolysate[J]. Energy Fuels,2019,33:5785−5788. doi: 10.1021/acs.energyfuels.9b00506
    [20] LI P, WEI X Y, SUN X, LU Y, ZONG Z, MUKASA R, WANG Y, SHI D, LI L, ZHAO L, FAN X, ZHAO Y, HOU J, LIU Q. The isolation of condensed arenes from Shenmu-Fugu coal liquefaction residue[J]. Energy Source Part A,2013,35(23):2250−2256. doi: 10.1080/15567036.2012.703286
    [21] 刘朋飞, 张永奇, 房倚天, 赵建涛. 神华煤直接液化残渣超临界溶剂萃取研究[J]. 燃料化学学报,2012,40(7):776−781.

    LIU Peng-fei, ZHANG Yong-qi, FANG Yi-tian, ZHAO Jian-tao. Supercritical solvent extraction of direct liquefaction residue from Shenhua coal[J]. J Fuel Chem Technol,2012,40(7):776−781.
    [22] 位艳宾, 魏贤勇, 李胜, 于利成, 宗志敏. 神府和胜利煤液化残渣CS2萃取物的组成分析[J]. 河南师范大学学报(自然科学版),2013,41(1):74−77.

    WEI Yan-bin, WEI Xian-yong, LI Sheng, YU Li-cheng, ZONG Zhi-min. Chemical compositions of carbon disulfide extractable fraction of Shenfu and Shengli coal liquefaction residue[J]. J Nat Sci Henan Normal Univ,2013,41(1):74−77.
    [23] ZHENG Q X, ZHANG Y L, WAHYUDIONO, FOUQUET T, ZENG X, KANDA H, GOTO M. Room-temperature extraction of direct coal liquefaction residue by liquefied dimethyl ether[J]. Fuel,2020,262:116528. doi: 10.1016/j.fuel.2019.116528
    [24] CHENG X, LI G, PENG Y, SONG S, SHI X, WU J, XIE J, ZHOU M, HU G. Obtaining needle coke from coal liquefaction residue[J]. Chem Tech Fuels Oil+,2012,48(5):349−355. doi: 10.1007/s10553-012-0379-3
    [25] WANG Y G, NIU Z S, SHEN J, NIU Y X, LIU G, SHENG Q T. Optimization of direct coal liquefaction residue extraction[J]. Energy Source Part A,2017,39(1):83−89. doi: 10.1080/15567036.2016.1235062
    [26] LI P, ZHAO Y Q, FAN G X. Quantitative analysis of alkanoate and condensed arenes in the extracts from direct coal liquefaction residue by ultrasonication-assisted solvent extraction using alcohols[J]. Energ Source Part A,2018,40(10):1266−1272. doi: 10.1080/15567036.2018.1476623
    [27] CONG X S, ZONG Z M, LI M, ZHOU Y, GAO S Q, WEI X Y. Isolation and Identification of Two Novel Condensed Aromatic Lactones from Zhundong Subbituminous Coal[J]. Energy Fuels,2014,28:7394−7397. doi: 10.1021/ef501851y
    [28] LI P, ZONG Z M, LI Z K, WANG Y G, LIU F J, WEI X Y. Characterization of basic heteroatom-containing organic compounds in liquefaction residue from Shenmu-Fugu subbituminous coal by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Fuel Process Technol,2015,132:91−98. doi: 10.1016/j.fuproc.2014.12.026
    [29] ZHANG Y Y, WEI X Y, LV J H, JIANG H, LIU F J, LIU G H, ZONG Z M. Characterization of nitrogen-containing aromatics in Baiyinhua lignite and its soluble portions from thermal dissolution[J]. Chin J Chem Eng,2019,27(11):2783−2787. doi: 10.1016/j.cjche.2019.06.001
    [30] 李鹏. 神木-府谷煤液化残渣的组成结构与H2O2/乙酸酐氧化[D]. 徐州: 中国矿业大学, 2015.

    LI Peng. Compositional and structural features of Shenmu-Fugu coal liquefaction residue and oxidation using H2O2/acetic anhydride[D]. Xuzhou: China University of Mining and Technology, 2015.
    [31] LIN X C, LI S Y, GUO F, H, JIANG G C, CHEN X J, WANG Y G. High-efficiency extraction and modification on the coal liquefaction residue using supercritical fluid with different types of solvents[J]. Energy Fuels,2016,30(5):3917−3928. doi: 10.1021/acs.energyfuels.6b00326
    [32] 位艳宾. 煤液化残渣的组成结构分析和催化加氢[D]. 徐州: 中国矿业大学, 2013.

    WEI Yan-bin. Compositional Analysis and Catalytic Hydrogenation of Coal Liquefaction Residues[D]. Xuzhou: China University of Mining and Technology, 2013.
    [33] Yuan X, Liu Y H, Si J P, ZHU Y Q, YUAN K. Comparison study of different extraction methods of Sarcandra glabra[J]. J Chin Med Mater,2008,31(9):1415−1418.
    [34] 田斌. 煤分级热解气化基础研究[D]. 徐州: 中国矿业大学, 2013.

    TIAN Bin. Compositional analysis and catalytic hydrogenation of coal liquefaction residues[D]. Xuzhou: China University of Mining and Technology, 2013.
    [35] KARATUN ON, KAPIZOVA NB. Extraction of aromatic hydrocarbons from gasoline fraction by blended extractants[J]. Chem Technol Fuels Oil+,2014,50(3):230−232. doi: 10.1007/s10553-014-0514-4
    [36] 程时富, 张元新, 常鸿雁, 白雪梅, 章旭文, 李克键. 煤直接液化残渣的萃取和利用研究[J]. 煤炭转化,2015,38(4):38−42.

    CHENG Shi-fu, ZHANG Yuan-xin, CHANG Hong-yan, BAI Xue-mei, ZHANG Xu-wen, LI Ke-jian. Study on extraction and utilization of coal direct liquefaction residue[J]. Coal Convers,2015,38(4):38−42.
    [37] 钟金龙. 煤炭直接液化残渣加氢试验研究[D]. 北京: 煤炭科学研究总院, 2011.

    ZHONG Jin-long. Study on hydrogenation of direct coal liquefaction residue[D]. Beijing: China Coal Research Institute, 2011.
    [38] 陈吉鲁. 煤液化残渣溶剂萃取分离及利用研究[D]. 上海: 上海应用技术学院, 2015.

    CHEN Ji-lu. Extract separation and utilization of coal direct liquefied residue[D]. Shanghai: Shanghai Institute of Technology, 2015.
    [39] 钟金龙, 李文博, 史士东, 朱晓苏. 煤炭直接液化残渣有机可溶物萃取研究[J]. 煤炭学报,2012,37(2):316−322.

    ZHONG Jin-long, LI Wen-bo, SHI Shi-dong, ZHU Xiao-su. Solvent extraction research on organic matter in direct coal liquefaction residue[J]. J China Coal Soc,2012,37(2):316−322.
    [40] SEDDON K R. Ionic liquids for clean technology[J]. J Chem Technol Biot,1997,68(4):351−356. doi: 10.1002/(SICI)1097-4660(199704)68:4<351::AID-JCTB613>3.0.CO;2-4
    [41] ZHENG C, BRUNNER M, LI H, ZHANG D K, ATKIN R. Dissolution and suspension of asphaltenes with ionic liquids[J]. Fuel,2019,238:129−138. doi: 10.1016/j.fuel.2018.10.070
    [42] BAI L, NIE Y, LI Y, DONG H F, ZHANG X P. Protic ionic liquids extract asphaltenes from direct coal liquefaction residue at room temperature[J]. Fuel Process Technol,2013,108:94−100. doi: 10.1016/j.fuproc.2012.04.008
    [43] 赵波. 磁性离子液体萃取脱除煤直接液化残渣中灰分的研究[D]. 上海: 华东理工大学, 2015.

    ZHAO Bo. Research on the extraction of magnetic ionic liquids to remove ash from coal direct liquefaction residues[D]. Shanghai: East China University of Science and Technology, 2015.
    [44] BAI L, NIE Y, HUANG J C, LI Y, DONG H F, ZHANG X P. Efficiently trapping asphaltene-type materials from direct coal liquefaction residue using alkylsulfate-based ionic liquids[J]. Fuel,2013,112:289−294. doi: 10.1016/j.fuel.2013.05.035
    [45] WANG J, YAO H, NIE Y, BAI L, ZHANG X P, LI J W. Application of iron-containing magnetic ionic liquids in extraction process of coal direct liquefaction residues[J]. Ind Eng Chem Res,2012,51(9):3776−3782. doi: 10.1021/ie202940k
    [46] ZHAO B, CAO F H. Research on iron-containing magnetic ionic liquids in extraction-deash of coal direct liquefaction residues using ultrasonic oscillation[J]. Adv Mat Res,2014,1049/1050:110−117.
    [47] 王杰利. 基于煤直接液化残渣提取沥青烯的磁性离子液体合成与研究[D]. 北京: 北京化工大学, 2012.

    WANG Jie-li. Syntheses and studies of magnetic ionic liquids extracting asphaltenes from coal direct liquefaction residues[D]. Beijing: Beijing University of Chemical Technology, 2012.
    [48] NIE Y, BAI L, LI Y, DONG H F, ZHANG X P, ZHANG S J. Study on extraction asphaltenes from direct coal liquefaction residue with ionic liquids[J]. Ind Eng Chem Res,2011,50(17):10278−10282. doi: 10.1021/ie201187m
    [49] NIE Y, BAI L, DONG H F, ZHANG X P, ZHANG S J. Extraction of asphaltenes from direct coal liquefaction residue by dialkylphosphate ionic liquids[J]. Sep Sci Technol,2012,47:386−391. doi: 10.1080/01496395.2011.633957
    [50] LI Y, Zhang X P, LAI S Y, DONG H F, CHEN X L, WANG X L, NIE Y, SHENG Y, ZHANG S J. Ionic liquids to extract valuable components from direct coal liquefaction residues[J]. Fuel,2012,94:617−619. doi: 10.1016/j.fuel.2011.10.031
    [51] DYRKACZ G R, BLOOMQUIST C A A. Solvent extraction of separated macerals in carbon disulfide/N-methylpyrrolidone[J]. Energy Fuels,2001,15(6):1403−1408. doi: 10.1021/ef0100350
    [52] HUANG J, LI C, BAI L. Extraction of coal-tar pitch using NMP/ILs mixed solvents[J]. Sci China Chem,2014,57(12):1760−1765. doi: 10.1007/s11426-014-5189-5
    [53] LI Y, ZHANG X P, DONG H F, WANG X L, NIE Y, ZHANG S J. Efficient extraction of direct coal liquefaction residue with the [bmim]Cl/NMP mixed solvent[J]. RSC Adv,2011,1(8):1579−1584. doi: 10.1039/c1ra00218j
    [54] 王晓亮. 离子液体提取煤液化残渣及其回收的研究[D]. 北京: 北京化工大学, 2012.

    WANG Xiao-liang. Study on extraction of direct coal liquefaction residue using inoic liquids and recycle of inoic liquids[D]. Beijing: Beijing University of Chemical Technology, 2012.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  611
  • HTML全文浏览量:  216
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08
  • 修回日期:  2021-02-26
  • 网络出版日期:  2021-03-19
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回