留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高导热SiO2@Al载体的制备及其在费托合成中的应用

张天鹏 王俊刚 章日光 陈从标 贾丽涛 李德宝 侯博

张天鹏, 王俊刚, 章日光, 陈从标, 贾丽涛, 李德宝, 侯博. 高导热SiO2@Al载体的制备及其在费托合成中的应用[J]. 燃料化学学报(中英文), 2021, 49(8): 1140-1147. doi: 10.19906/j.cnki.JFCT.2021050
引用本文: 张天鹏, 王俊刚, 章日光, 陈从标, 贾丽涛, 李德宝, 侯博. 高导热SiO2@Al载体的制备及其在费托合成中的应用[J]. 燃料化学学报(中英文), 2021, 49(8): 1140-1147. doi: 10.19906/j.cnki.JFCT.2021050
ZHANG Tian-peng, WANG Jun-gang, ZHANG Ri-guang, CHEN Cong-biao, JIA Li-tao, LI De-bao, HOU Bo. Preparation of high thermal conductivity SiO2@Al support and its application in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1140-1147. doi: 10.19906/j.cnki.JFCT.2021050
Citation: ZHANG Tian-peng, WANG Jun-gang, ZHANG Ri-guang, CHEN Cong-biao, JIA Li-tao, LI De-bao, HOU Bo. Preparation of high thermal conductivity SiO2@Al support and its application in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1140-1147. doi: 10.19906/j.cnki.JFCT.2021050

高导热SiO2@Al载体的制备及其在费托合成中的应用

doi: 10.19906/j.cnki.JFCT.2021050
基金项目: 国家自然科学基金(21872162, 21902170),山西省重点研发计划(201903D121033)和煤科学与技术省部共建国家重点实验室培育基地开放课题基金(MKX201902)资助
详细信息
    通讯作者:

    E-mail: houbo@sxicc.ac.cn

  • 中图分类号: O643

Preparation of high thermal conductivity SiO2@Al support and its application in Fischer-Tropsch synthesis

Funds: The project was supported by the National Natural Science Foundation of China (21872162, 21902170), the Key Research Project of Shanxi Province (201903D121033) and the Key Laboratory of Coal Science and Technology, Taiyuan University of Technology (MKX201902)
  • 摘要: 通过在弱碱性条件下水解正硅酸乙酯(TEOS),以十六烷基三甲基溴化铵(CTAB)为模板剂成功制备了SiO2@Al核壳结构高导热载体,并采用过量浸渍法负载15%(质量分数)钴物种,进行了费托合成反应性能考察。结果表明,制备得到的核壳结构载体既保留了高金属铝含量,又具有高比表面积壳层,孔径较为均一,为2.6−2.8 nm。通过改变正硅酸乙酯的添加量可以调节载体中二氧化硅的含量,进而控制壳层厚度。随着二氧化硅壳层厚度的增加,载体的比表面积逐渐增大,催化剂还原度降低。二氧化硅壳层增强了金属钴的分散,避免金属钴在铝颗粒上的团聚失活。在相近转化率条件下,壳层厚度较薄的15Co/5-SiO2@Al催化剂显示出最好的费托反应性能,这主要归因于较薄的二氧化硅壳层和金属钴颗粒之间具有适中的金属-载体相互作用,在起到锚定分散钴物种作用的同时提高了钴物种的还原度。
  • FIG. 840.  FIG. 840.

    FIG. 840.  FIG. 840.

    图  1  载体(a)和催化剂(b)的XRD谱图

    a: 0-SiO2@Al; b: 5-SiO2@Al; c: 10-SiO2@Al; d: 20-SiO2@Al; e: 15Co/0-SiO2@Al; f: 15Co/5-SiO2@Al; g: 15Co/10-SiO2@Al; h: 15Co/20-SiO2@Al

    Figure  1  XRD patterns of the supports (a) and catalysts (b)

    图  2  样品的N2吸附-脱附等温曲线和孔径分布

    (a), (c) for supports; (b), (d) for catalysts; a: 0-SiO2@Al; b: 5-SiO2@Al; c: 10-SiO2@Al; d: 20-SiO2@Al; e: 15Co/0-SiO2@Al; f: 15Co/5-SiO2@Al; g: 15Co/10-SiO2@Al; h: 15Co/20-SiO2@Al

    Figure  2  N2 adsorption-desorption isotherms and pore size distribution of the samples

    图  3  载体和催化剂的SEM照片

    (a): 0-SiO2@Al; (b): 5-SiO2@Al; (c): 10-SiO2@Al; (d): 20-SiO2@Al; (e): 15Co/0-SiO2@Al; (f): 15Co/5-SiO2@Al; (g): 15Co/10-SiO2@Al; (h): 15Co/20-SiO2@Al; (i): used-15Co/0-SiO2@Al; (j): used-15Co/5-SiO2@Al; (k): used-15Co/10-SiO2@Al; (l): used-15Co/20-SiO2@Al

    Figure  3  SEM images of the supports and catalysts

    图  4  催化剂的H2-TPR谱图

    a: 15Co/0-SiO2@Al; b: 15Co/5-SiO2@Al; c: 15Co/10-SiO2@Al; d: 15Co/20-SiO2@Al

    Figure  4  H2-TPR profiles of the catalysts

    图  5  二氧化硅含量对催化剂的选择性和TOF的影响

    Figure  5  Effect of silica content on the selectivity and TOF of catalysts

    表  1  载体和催化剂的物化性质

    Table  1  Physico-chemical properties of the supports and the catalysts

    SamplesABET/(m2·g−1)vp/(cm3·g−1)dp/nmAla/%d(Co)b/nmReducibilityc/%Dispersiond/%ds(Co)e/nm
    0-SiO2@Al0.1898.6
    5-SiO2@Al74.270.04062.893.7
    10-SiO2@Al115.870.06402.690.4
    20-SiO2@Al197.680.10142.882.8
    15Co/0-SiO2@Al6.700.054934.317.1568.724.123.49
    15Co/5-SiO2@Al45.130.05655.016.7067.964.322.50
    15Co/10-SiO2@Al65.160.06103.716.5257.505.019.34
    15Co/20-SiO2@Al130.090.08473.314.9338.525.318.08
    ABET: BET surface area; vp: BJH pore volume; dp: average pore diameter; a: calculated by ICP-OES; b: calculated by Scherrer equation according to the 2θ = 36.9° diffraction peak of Co3O4, d(Co) = 0.75d(Co3O4); c: calculated by H2-TPR; d : calculated by dispersion = 96/d s(Co); e: calculated from H2 chemisorption
    下载: 导出CSV

    表  2  催化剂的费托反应性能

    Table  2  Performance of different catalysts on Fischer-Tropsch synthesis

    Catalystt/ ℃xCO /%Selectivity s/%TOF/
    (10−3·s−1)
    Criterion a
    CH4C2−4C5+
    15Co/0-SiO2@Al1856.1816.2012.3071.51
    15Co/5-SiO2@Al20527.969.6611.8678.4823.741.03 × 10−4
    15Co/10-SiO2@Al21527.1819.6318.2162.1619.751.00 × 10−4
    15Co/20-SiO2@Al20530.6121.7128.5749.7119.211.05 × 10−4
    a: Mears criterion, calculated by the formula (1);
    reaction conditions: H2/CO (molar ratio) = 2.0,GHSV = 1000 h−1p = 2.0 MPa,time on stream = 48 h
    下载: 导出CSV
  • [1] MUNNIK P, DE JONGH P E, DE JONG K P. Recent developments in the synthesis of supported catalysts[J]. Chem Rev,2015,115(14):6687−6718. doi: 10.1021/cr500486u
    [2] DRY M. The Fischer-Tropsch process: 1950—2000[J]. Catal Today, 71(3/4): 227-241.
    [3] ZHANG L, CHU H L, QU H, ZHANG Q, XU H, CAO J, TANG Z Y, XUAN J. An investigation of efficient microstructured reactor with monolith Co/anodic γ-Al2O3/Al catalyst in Fischer-Tropsch synthesis[J]. Int J Hydrogen Energy,2018,43(6):3077−3086. doi: 10.1016/j.ijhydene.2017.12.152
    [4] ZHANG Q, KANG J, WANG Y. Development of novel catalysts for fischer-tropsch synthesis: Tuning the product selectivity[J]. ChemCatChem,2010,2(9):1030−1058. doi: 10.1002/cctc.201000071
    [5] DE TYMOWSKI B, LIU Y, MENY C, LEFÈVRE C, BEGIN D, NGUYEN P, PHAM C, EDOUARD D, LUCK F, PHAM-HUU C. Co–Ru/SiC impregnated with ethanol as an effective catalyst for the Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2012,419−420:31−40. doi: 10.1016/j.apcata.2012.01.004
    [6] ZHU X W, LU X J, LIU X Y, HILDEBRANDT D, GLASSER D. Study of radial heat transfer in a tubular Fischer-Tropsch synthesis reactor[J]. Ind Eng Chem Res,2010,49(21):10682−10688. doi: 10.1021/ie1004527
    [7] 吴春来. 南非SASOL的煤炭间接液化技术[J]. 煤化工,2003,31(2):3−6. doi: 10.3969/j.issn.1005-9598.2003.02.001

    WU Chun-lai. Sasol synfuels-indirect coal liquefaction technology in South Africa[J]. Coal Chem Ind,2003,31(2):3−6. doi: 10.3969/j.issn.1005-9598.2003.02.001
    [8] PANGARKAR K, SCHILDHAUER T J, VAN OMMEN J R, NIJENHUIS J, MOULIJN J A, KAPTEIJN F. Experimental and numerical comparison of structured packings with a randomly packed bed reactor for Fischer-Tropsch synthesis[J]. Catal Today,2009,147:S2−S9. doi: 10.1016/j.cattod.2009.07.035
    [9] DAVIS B H. Overview of reactors for liquid phase Fischer-Tropsch synthesis[J]. Catal Today,2002,71(3-4):249−300. doi: 10.1016/S0920-5861(01)00455-2
    [10] HUANG X W, ROBERTS C B. Selective Fischer-Tropsch synthesis over an Al2O3 supported cobalt catalyst in supercritical hexane[J]. Fuel Process Technol,2003,83(1-3):81−99. doi: 10.1016/S0378-3820(03)00060-2
    [11] YANG J I, YANG J H, KIM H J, JUNG H, CHUN D H, LEE H T. Highly effective cobalt catalyst for wax production in Fischer-Tropsch synthesis[J]. Fuel,2010,89(1):237−243. doi: 10.1016/j.fuel.2009.07.008
    [12] XIONG H F, MOTCHELAHO M A M, MOYO M, JEWELL L L, COVILLE N J. Correlating the preparation and performance of cobalt catalysts supported on carbon nanotubes and carbon spheres in the Fischer-Tropsch synthesis[J]. J Catal,2011,278(1):26−40. doi: 10.1016/j.jcat.2010.11.010
    [13] MAXIME LACROIX L D, BENOIT DE TYMOWSKI, FABRICE VIGNERON, DAVID EDOUARD, DOMINIQUE BÉGIN, PATRICK NGUYEN, CHARLOTTE PHAM, SABINE SAVIN-PONCET, FRANCIS LUCK, MARC-JACQUES LEDOUX, CUONG PHAM-HUUA. Silicon carbide foam composite containing cobalt as a highly selective and re-usable Fischer-Tropsch synthesis catalyst[J]. Appl Catal A: Gen,2011,397(1/2):62−72. doi: 10.1016/j.apcata.2011.02.012
    [14] CHUNG D D L. Materials for thermal conduction[J]. Appl Therm Eng,2001,21(16):1593−1605. doi: 10.1016/S1359-4311(01)00042-4
    [15] WANG D, CHEN C B, WANG J G, JIA L T, HOU B, LI D B. High thermal conductive core-shell structured Al2O3@Al composite supported cobalt catalyst for Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2016,527:60−71. doi: 10.1016/j.apcata.2016.08.027
    [16] ZHONG M, WANG J G, CHEN C B, MA Z C, JIA L T, HOU B, LI D B. Incorporating silicon carbide nanoparticles into Al2O3@Al to achieve an efficient support for Co-based catalysts to boost their catalytic performance towards Fischer-Tropsch synthesis[J]. Catal Sci Technol,2019,9(21):6037−6046. doi: 10.1039/C9CY01422E
    [17] CHENG Z P, YANG Y, LI F S, PAN Z H. Synthesis and characterization of aluminum particles coated with uniform silica shell[J]. Trans Nonferrous Met Soc China,2008,18(2):378−382. doi: 10.1016/S1003-6326(08)60066-7
    [18] JUNG J S, KIM S W, MOON D J. Fischer-Tropsch synthesis over cobalt based catalyst supported on different mesoporous silica[J]. Catal Today,2012,185(1):168−174. doi: 10.1016/j.cattod.2012.02.002
    [19] BORG O, DIETZEL P, SPJELKAVIK A, TVETEN E, WALMSLEY J, DIPLAS S, ERI S, HOLMEN A, RYTTER E. Fischer-Tropsch synthesis: Cobalt particle size and support effects on intrinsic activity and product distribution[J]. J Catal,2008,259(2):161−164. doi: 10.1016/j.jcat.2008.08.017
    [20] ZHANG H J, WU J, ZHOU L P, ZHANG D Y, QI L M. Facile synthesis of monodisperse microspheres and gigantic hollow shells of mesoporous silica in mixed Water-Ethanol solvents[J]. Langmuir,2007,23(3):1107−1113. doi: 10.1021/la062542l
    [21] PANPRANOT J, KAEWGUN S, PRASERTHDAM P. Metal-Support interaction in mesoporous silica supported cobalt Fischer-Tropsch catalysts[J]. React Kinet Catal Lett,2005,85(2):299−304. doi: 10.1007/s11144-005-0274-6
    [22] CHU W, CHERNAVSKII P, GENGEMBRE L, PANKINA G, FONGARLAND P, KHODAKOV A. Cobalt species in promoted cobalt alumina-supported Fischer-Tropsch catalysts[J]. J Catal,2007,252(2):215−230. doi: 10.1016/j.jcat.2007.09.018
    [23] MENDES F M T, PEREZ C A C, NORONHA F B, SCHMAL M. TPSR of CO hydrogenation on Co/Nb2O5/Al2O3 catalysts[J]. Catal Today,2005,101(1):45−50. doi: 10.1016/j.cattod.2004.12.009
    [24] RAHMATI M, HUANG B Y, SCHOFIELD L M, FLETCHER T H, WOODFIELD B F, HECKER W C, BARTHOLOMEW C H, ARGYLE M D. Effects of Ag promotion and preparation method on cobalt Fischer-Tropsch catalysts supported on silica-modified alumina[J]. J Catal,2018,362:118−128. doi: 10.1016/j.jcat.2018.03.027
    [25] IGLESIA E, REYES S C, MADON R J, SOLED S L. Selectivity control and catalyst desigAn in the Fischer-Tropsch synthesis: Sites, pellets, and reactors[J]. Adv Catal, 1993, 39: 221−302.
    [26] MEARS D. Tests for transport limitations in experimental catalytic reactors[J]. Ind Eng Chem Process Des Dev,1972,11(2):320−320. doi: 10.1021/i260042a600
    [27] ZHONG M, GUO Y, WANG J, MA Z, XIA M, CHEN C, JIA L, HOU B, LI D. The Fischer-Tropsch synthesis performance over cobalt supported on silicon-based materials: the effect of thermal conductivity of the support[J]. Catal Sci Technol,2019,9(13):3482−3492. doi: 10.1039/C9CY00578A
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  70
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-09
  • 修回日期:  2021-03-09
  • 网络出版日期:  2021-03-29
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回