留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NaOH协同Pd/C选择性解聚木质素β−O−4键

王文锦 徐莹 朱妤婷 马隆龙

王文锦, 徐莹, 朱妤婷, 马隆龙. NaOH协同Pd/C选择性解聚木质素β−O−4键[J]. 燃料化学学报(中英文), 2021, 49(12): 1876-1882. doi: 10.19906/j.cnki.JFCT.2021056
引用本文: 王文锦, 徐莹, 朱妤婷, 马隆龙. NaOH协同Pd/C选择性解聚木质素β−O−4键[J]. 燃料化学学报(中英文), 2021, 49(12): 1876-1882. doi: 10.19906/j.cnki.JFCT.2021056
WANG Wen-jin, XU Ying, ZHU Yu-ting, MA Long-long. Selective depolymerization β−O−4 linkage of lignin over Pd/C and NaOH[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1876-1882. doi: 10.19906/j.cnki.JFCT.2021056
Citation: WANG Wen-jin, XU Ying, ZHU Yu-ting, MA Long-long. Selective depolymerization β−O−4 linkage of lignin over Pd/C and NaOH[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1876-1882. doi: 10.19906/j.cnki.JFCT.2021056

NaOH协同Pd/C选择性解聚木质素β−O−4键

doi: 10.19906/j.cnki.JFCT.2021056
基金项目: 国家自然科学基金委员会与泰国国家研究理事会“可再生能源”领域合作研究项目(5181101221),中国科学院战略性先导科技专项(A)(XDA 21060102)和广东省“珠江人才计划”本土创新科研团队项目(2017BT01N092)资助
详细信息
    通讯作者:

    E-mail:xuying@ms.giec.ac.cn

  • 中图分类号: TK6

Selective depolymerization β−O−4 linkage of lignin over Pd/C and NaOH

Funds: The project was supported by the National Natural Science Foundation of China and the National Research Council of Thailand’s "Renewable Energy" Field Cooperative Research Project (5181101221), the Chinese Academy of Sciences Strategic Leading Science and Technology Project (A) (XDA 21060102) and the Local Innovative Scientific Research Team of the "Pearl River Talent Program" of Guangdong Province Project Grant (2017BT01N092)
  • 摘要: β−O−4醚键是木质素结构中含量最丰富的单元间连接键型,研究高效断裂β−O−4的催化体系对木质素解聚制备单酚具有重要意义。本研究以β−O−4型二聚体模型化合物为原料,结合GC-MS、GC-FID、HSQC NMR表征手段,考察炭负载金属催化剂、反应温度、时间、氢气初始压力等因素对二聚体β−O−4键的断键活性以及单体收率的影响。结果表明,NaOH与炭负载金属催化剂存在协同作用,可以增强β−O−4断键活性。其中,NaOH与Pd/C协同效果最佳,二聚体解聚单体产物从44.1%提高至83.4%。机理研究表明,NaOH协同Pd/C能有效抑制二聚体发生Cα羟基的脱除,显著提升二聚体β−O−4的断键选择性,从而提高了单体产物的收率。NaOH协同Pd/C催化体系对其他醚键(α−O−4)同样存在优异的断键能力。因此,在所做实验的最佳条件下,NaOH协同Pd/C催化体系能高效解聚碱木质素制备单酚化合物,单体产物收率高达37.5%,苯甲醇类选择性高达48.8%。
  • FIG. 1153.  FIG. 1153.

    FIG. 1153.  FIG. 1153.

    图  1  β−O−4二聚体模化物HSQC NMR分析

    Figure  1  HSQC NMR spectra of β−O−4 dimer

    图  2  Pd/C催化模型化合物β–O–4解聚反应路径图

    Figure  2  Reaction path of β–O–4 dimer depolymerization over Pd/C

    图  3  NaOH协同Pd/C对不同木质素单元连接键的反应活性

    Figure  3  Dimer conversion and aromatics yield form different dimer over Pd/C and NaOH

    表  1  催化剂对β–O–4二聚体模型化合物的影响

    Table  1  Effect of catalyst on the depolymerization of β–O–4 dimer

    ColCatalystConv./%Selectivity/%Aromatics/%Mass balance
    2345678
    1Ru/C99.35.225.53.34.6nd15.451.233.793.3
    2Pd/C85.4nd38.95.0ndnd29.926.244.189.4
    3Co/C69.5nd15.812.5ndndnd71.711.495.8
    4Ni/C63.5nd41.726.8ndnd17.614.041.090.2
    5Pt/C28.4nd37.230.3ndnd14.218.314.992.8
    6NaOH87.8nd52.229.718.1ndndnd58.670.8
    7Ni/C-NaOH69.35.958.114.515.0nd12.4nd58.389.0
    8Ru/C-NaOH68.46.356.427.47.88.4ndnd60.992.5
    9Pd/C-NaOH96.5nd49.640.00.9nd9.5nd83.486.9
    10Pt/C-NaOH86.95.158.226.89.65.5ndnd77.190.2
    11Co/C-NaOH87.45.051.49.88.2nd26.54.169.186.9
    note 1: reaction condition (0.1 g β−O−4 dimer,30 mL EtOH,0.1 g M/C,0.1 g NaOH,150 ℃,3 h,2 MPa H2);
    note 2: nd (NOT DETECT);
    note 3: aromatics yield was calculated from products 2−7;
    note 4: product 2-8 are α-(ethoxymethyl) benzyl alcohol, guaiacol, α-phenethyl alcohol, β-phenethyl alcohol, styrene, phenethyl alkane, 1-methoxy-2-phenethoxybenzene, respectively
    下载: 导出CSV

    表  2  不同催化剂解聚产物随温度变化的影响

    Table  2  Effect of temperature on depolymerization products over different catalysts

    Temperature/℃Conv./%Selectivity/%Aromatics/%Mass balance
    2345678
    Pd/C
    120 63.8 1.8 32.9 34.8 nd 1.4 0.3 28.8 31.2 90.7
    130 68.8 2.1 33.9 29.0 nd 1.1 7.2 26.7 36.7 92.7
    140 77.9 1.1 33.5 25.0 nd 0.8 10.8 28.7 39.5 91.7
    150 85.4 nd 38.9 5.0 nd nd 29.9 26.2 44.1 89.4
    NaOH
    120 43.7 nd 51.1 31.8 17.1 nd nd nd 26.4 82.6
    130 50.2 nd 48.5 28.2 23.2 nd nd nd 29.9 79.7
    140 78.4 nd 50.6 29.6 19.9 nd nd nd 53.5 75.1
    150 87.8 nd 51.3 29.2 19.5 nd nd nd 59.6 70.8
    Pd/C-NaOH
    120 58.8 1.7 47.4 17.9 19.3 5.1 8.6 nd 48.9 90.1
    130 68.2 5.1 47.7 20.6 2.3 16.4 7.9 nd 58.0 89.7
    140 87.6 2.7 49.5 30.8 1.5 7.0 8.5 nd 77.2 89.5
    150 96.5 nd 49.6 40.0 0.9 nd 9.5 nd 83.4 86.9
    160 92.4 nd 46.4 39.8 0.8 nd 13.0 nd 79.5 87.1
    120−24 h 93.2 nd 47.9 40.3 nd nd 11.8 nd 81.2 88.0
    note 1: 0.1 g β–O–4 dimer,30 mL EtOH,0.1 g Pd/C,0.1 g NaOH,3 h,2 MPa H2;
    note 2: nd: NOT DETECT; ①: reaction condition(120 ℃,24 h,2 MPa H2
    下载: 导出CSV

    表  3  初始氢气压力对β−O−4模型化合物解聚的影响

    Table  3  Effect of hydrogen pressure on the depolymerization of dimer

    Pressure/MPaConv./%Selectivity/%Aromatics/%Mass balance
    2345678
    046.35.946.028.31.116.42.4nd31.585.2
    184.71.852.242.21.00.22.6nd71.586.8
    296.5nd49.640.00.9nd9.5nd83.486.9
    394.3nd50.523.21.3nd25.1nd82.388.0
    note 1: 0.1 g β−O−4 dimer,30 mL EtOH,0.1 g Pd/C,0.1 g NaOH,150 ℃,3 h; note 2: nd (NOT DETECT)
    下载: 导出CSV

    表  4  NaOH协同Pd/C解聚碱木质素单体及收率

    Table  4  Products of alkali lignin depolymerization over Pd/C and NaOH (%)

    ProductPd/CNaOHPd/C-NaOH
    3-methyl-phenol2.30.70.7
    2,3-dimethyl-phenol1.00.20.1
    2,3,4,6-tetramethyl-phenol0.50.90.8
    4-ethyl-guaiacol2.11.61.9
    4-methyl-benzyl alcohol1.06.910.3
    3-methyl-benzyl alcohol0.51.36.3
    2,4,6-trimethylbenzyl alcohol3.31.31.7
    2,4-dimethyl-ethylbenzene1.90.31.7
    1,2,6-trimethyl-cyclopentane0.10.42.0
    2-ethyl-5-methyl-cyclohexane3.51.10.8
    1-methyl-2-ethyl-cyclopropane0.50.30.7
    1-phenylpropane-1,2-diol0.41.20.9
    2-methylbenzyl formate0.71.20.8
    3-phenylbut-3-en-1-ol1.01.64.2
    2-phenyl-butanol0.30.54.7
    Total yield19.119.437.5
    note 1: 0.5 g alkali lignin,0.2 g Pd/C,0.125 mol/L NaOH,24 mL EtOH,16 mL H2O,260 ℃,4 h,2 MPa H2
    下载: 导出CSV
  • [1] PANDEY M P, KIM C S. Lignin depolymerization and conversion: A review of thermochemical methods[J]. Chem Eng Technol,2011,34(1):29−41. doi: 10.1002/ceat.201000270
    [2] CHEN X, GUAN W X, TSANG C W, HU H Q, LIANG C H. Lignin valorizations with Ni catalysts for renewable chemicals and fuels productions[J]. Catalysts,2019,9(6):488. doi: 10.3390/catal9060488
    [3] AZADI P, INDERWILDI O R, FARNOOD R, KING D A. Liquid fuels, hydrogen and chemicals from lignin: A critical review[J]. Renewable Sustainable Energy Rev,2013,21:506−523. doi: 10.1016/j.rser.2012.12.022
    [4] XU C, ARANCON R, LABIDI J, LUQUE R. Lignin depolymerisation strategies: Towards valuable chemicals and fuels[J]. Chem Soc Rev,2014,43(22):7485−7500. doi: 10.1039/C4CS00235K
    [5] UPTON B M, KASKO A M. Strategies for the conversion of lignin to high-value polymeric materials: Review and perspective[J]. Chem Rev,2016,116(4):2275−2306. doi: 10.1021/acs.chemrev.5b00345
    [6] WATKINS D, NURUDDIN M, HOSUR M, TCHERBI-NARTEH A, JEELANI S. Extraction and characterization of lignin from different biomass resources[J]. J Mater Res Technol,2015,4(1):26−32. doi: 10.1016/j.jmrt.2014.10.009
    [7] JIANG Z, HU C. Selective extraction and conversion of lignin in actual biomass to monophenols: A review[J]. J Energy Chem,2016,25(6):947−956. doi: 10.1016/j.jechem.2016.10.008
    [8] HAGGLUND E, BJORKMAN C B. Lignin hydrochloride[J]. Biochemische Zeitschrift,1924,147:74−89.
    [9] ABU-OMAR M M, BARTA K, BECKHAM G T, LUTERBACHER J S, RALPH J, RINALDI R, ROMÁN-LESHKOV Y, SAMEC J S M, SELS B F, WANG F. Guidelines for performing lignin-first biorefining[J]. Energy Environ Sci,2021,14(1):262−292. doi: 10.1039/D0EE02870C
    [10] SJÖSTRÖM E. Introduction to carbohydrate chemistry[C]//Wood Chemistry. 2nd ed. San Diego: Academic Press, 1993.21-50.
    [11] GIERER J. Chemistry of delignification. I. General concept and reactions during pulping[J]. Wood Sci Technol,1985,19(4):289−312.
    [12] GIERER J. The chemistry of delignification. A general concept[J]. Holzforschung,1982,36(1):43−51. doi: 10.1515/hfsg.1982.36.1.43
    [13] RAMIREZ R S, HOLTZAPPLE M, PIAMONTE N. Fundamentals of biomass pretreatment at high pH[C]//Wyman C. E. Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals. Chichester: John Wiley & Sons, Ltd., 2013: 145−167.
    [14] VAN DEN BOSCH S, SCHUTYSER W, VANHOLME R, DRIESSEN T, KOELEWIJN S F, RENDERS T, DE MEESTER B, HUIJGEN W J J, DEHAEN W, COURTIN C M, LAGRAIN B, BOERJAN W, SELS B F. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps[J]. Energy Environ Sci,2015,8(6):1748−1763. doi: 10.1039/C5EE00204D
    [15] HU J, ZHANG S, XIAO R, JIANG X, WANG Y, SUN Y, LU P. Catalytic transfer hydrogenolysis of lignin into monophenols over platinum-rhenium supported on titanium dioxide using isopropanol as in-situ hydrogen source[J]. Bioresour Technol,2019,279:228−233. doi: 10.1016/j.biortech.2019.01.132
    [16] CHEN P, ZHANG Q, SHU R, XU Y, MA L, WANG T. Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts[J]. Bioresour Technol,2017,226:125−131. doi: 10.1016/j.biortech.2016.12.030
    [17] OPRIS C, COJOCARU B, GHEORGHE N, TUDORACHE M, COMAN S M, PARVULESCU V I, DURAKI B, KRUMEICH F, VAN BOKHOVEN J A. Lignin fragmentation over magnetically recyclable composite Co@Nb2O5@Fe3O4 catalysts[J]. J Catal,2016,339:209−227. doi: 10.1016/j.jcat.2016.04.002
    [18] WANMOLEE W, BELTRAMINI J N, ATANDA L, BARTLEY J P, LAOSIRIPOJANA N, DOHERTY W O S. Effect of Hcook/Ethanol on Fe/Husy, Ni/HUSY, and Ni-Fe/Husy catalysts on lignin depolymerization to benzyl alcohols and bioaromatics[J]. ACS Omega,2019,4(16):16980−16993. doi: 10.1021/acsomega.9b02413
    [19] LIMARTA S O, HA J-M, PARK Y-K, LEE H, SUH D J, JAE J. Efficient depolymerization of lignin in supercritical ethanol by a combination of metal and base catalysts[J]. J Ind Eng Chem,2018,57:45−54. doi: 10.1016/j.jiec.2017.08.006
    [20] KONNERTH H, ZHANG J, MA D, PRECHTL M H G, YAN N. Base promoted hydrogenolysis of lignin model compounds and organosolv lignin over metal catalysts in water[J]. Chem Eng Sci,2015,123:155−163. doi: 10.1016/j.ces.2014.10.045
    [21] SHU R, XU Y, MA L, ZHANG Q, WANG C, CHEN Y. Controllable production of guaiacols and phenols from lignin depolymerization using Pd/C catalyst cooperated with metal chloride[J]. Chem Eng J,2018,338:457−464. doi: 10.1016/j.cej.2018.01.002
    [22] STURGEON M R, KIM S, LAWRENCE K, PATON R S, CHMELY S C, NIMLOS M, FOUST T D, BECKHAM G T. A mechanistic investigation of acid-catalyzed cleavage of aryl-ether linkages: Implications for lignin depolymerization in acidic environments[J]. ACS Sustainable Chem Eng,2014,2(3):472−485. doi: 10.1021/sc400384w
    [23] LI H L, SONG G. Ru-catalyzed hydrogenolysis of lignin: Base-dependent tunability of monomeric phenols and mechanistic study[J]. ACS Catal,2019,9(5):4054−4064. doi: 10.1021/acscatal.9b00556
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  104
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-31
  • 修回日期:  2021-05-06
  • 网络出版日期:  2021-06-16
  • 刊出日期:  2021-12-29

目录

    /

    返回文章
    返回