留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甘油缩合制丙酮缩甘油中催化剂及反应机理研究进展

曾祥棵 王玮璐 黎良菊 欧阳平 张贤明

曾祥棵, 王玮璐, 黎良菊, 欧阳平, 张贤明. 甘油缩合制丙酮缩甘油中催化剂及反应机理研究进展[J]. 燃料化学学报(中英文), 2021, 49(12): 1768-1779. doi: 10.19906/j.cnki.JFCT.2021063
引用本文: 曾祥棵, 王玮璐, 黎良菊, 欧阳平, 张贤明. 甘油缩合制丙酮缩甘油中催化剂及反应机理研究进展[J]. 燃料化学学报(中英文), 2021, 49(12): 1768-1779. doi: 10.19906/j.cnki.JFCT.2021063
ZENG Xiang-ke, WANG Wei-lu, LI Liang-ju, OU-YANG Ping, ZHANG Xian-ming. Research progress of catalysts and reaction mechanism in glycerol condensation to acetone glycidol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1768-1779. doi: 10.19906/j.cnki.JFCT.2021063
Citation: ZENG Xiang-ke, WANG Wei-lu, LI Liang-ju, OU-YANG Ping, ZHANG Xian-ming. Research progress of catalysts and reaction mechanism in glycerol condensation to acetone glycidol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1768-1779. doi: 10.19906/j.cnki.JFCT.2021063

甘油缩合制丙酮缩甘油中催化剂及反应机理研究进展

doi: 10.19906/j.cnki.JFCT.2021063
基金项目: 重庆市教育委员会科学技术研究项目(KJQ202000823)资助
详细信息
    通讯作者:

    E-mail: weiluwang@ctbu.edu.cn

  • 中图分类号: TQ 251.1

Research progress of catalysts and reaction mechanism in glycerol condensation to acetone glycidol

Funds: The project was supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJQN202000823)
  • 摘要: 随着生物柴油产业的蓬勃发展,其主要副产物甘油的资源化利用已亟不可待。其中,将甘油与丙酮缩合生成丙酮缩甘油(2, 2-二甲基-1, 3-二氧戊环-4-甲醇,Solketal)是极具前景的研究方向,因为Solketal作为燃料添加剂不仅能显著增强燃油的黏度和低温性能,还能显著地减少一氧化碳、固体小颗粒及其他环境不友好物质的排放。该反应需依赖于催化剂中酸性位点的催化作用,所以酸催化剂的结构形态、酸量及相关理化性质的设计及完善是制约甘油缩酮化反应工业化进程的关键。因此,本研究结合近年来相关文献,系统综述了在该反应中均相、非均相酸催化剂在该领域中的研究进展及相关反应机理讨论。笔者从结构形态角度进行分类,介绍了不同类型酸催化剂的优势及特色,并在其结构性质对催化活性的影响上进行了重点阐述。对该领域中催化剂未来研究方向进行了展望。
  • FIG. 1142.  FIG. 1142.

    FIG. 1142.  FIG. 1142.

    图  1  生物柴油中甘油副产物的来源[6]

    Figure  1  Sources of glycerol by-products in biodiesel[6]

    图  2  甘油与丙酮的缩合反应[21]

    Figure  2  Condensation between glycerol and acetone[21]

    图  3  SnCl2催化丙酮缩甘油的合成[34]

    Figure  3  SnCl2-catalyzed solketal synthesis[34]

    (with permission from ACS Publications)

    图  4  Fe3+在甘油缩酮化反应中的反应机理[37]

    Figure  4  Reaction mechanism of Fe3+ in the ketalization of glycerol[37]

    图  5  甘油与丙酮在Lewis酸中心缩酮反应机理[64]

    Figure  5  Ketalization reaction mechanism of glycerol with acetone in L-acid Center[64]

    图  6  甘油与丙酮在Brønsted酸中心缩酮反应机理[49]

    Figure  6  Ketalization reaction mechanism of glycerol with acetone in B-acid Center[49]

    (with permission from ACS Publications)

    表  1  均相催化剂在甘油缩酮化反应中的反应及相关反应参数

    Table  1  Reaction results and related parameters of homogeneous catalysts in the ketalization of glycerol

    Homogeneous catalystMolar ratio of raw materials (acetone:glycerol)Reaction conditionsConversion of glycerin /%Selectivity of solketal /%Ref.
    SnCl2nn = 4∶125 ℃, 2 h, CH3CN as solvent9598[34]
    SnF2nn = 8∶125 ℃, 2 h9094[35]
    FeCl3(1-R)nn = 4∶1room temperature, 1.5 h90[36]
    Fe(NO3)3·9H2Onn = 1∶20room temperature, 100 min9697[37]
    Tetrapropylammonium phosphotungstatenn = 6∶130 ℃, 3 h94[38]
    下载: 导出CSV

    表  2  负载型催化剂在甘油缩酮化反应中的反应及相关反应参数

    Table  2  Reaction results and related parameters of the supported catalyst in the ketalization of glycerol

    Supported catalystMolar ratio of raw materials (acetone:glycerol)Reaction conditionsConversion of glycerin /%Selectivity of solketal /%Ref.
    Carbon-based loadingSO3H-Cnn = 8∶157 ℃, 1 h80100[42]
    SiO2 loadingZr-TUD-1, Hf-TUD-1,
    Sn-MCM-41
    nn = 1∶170 ℃, 6 h64, 65 and 62, respectively[43]
    Al2O3 loading${\rm{SO}}_{4}^{{2 -} } $/Zr2O-Al2O3nn = 3∶160 ℃, 100 min9694[44]
    5%Ni-1%Zr/ACnn = 8∶145 ℃, 3 h76[45]
    Ni-MWCNTs
    (multi-walled carbon nanotubes)
    nn = 6∶140 ℃, 3 h96[45]
    下载: 导出CSV

    表  3  分子筛催化剂在甘油缩酮化反应中的反应及相关反应参数

    Table  3  Reaction results and related parameters of molecular sieve catalyst in the ketalization of glycerol

    Molecular sieve catalystMolar ratio of raw materials (acetone:glycerol)Reaction conditionsConversion of glycerin /%Selectivity of solketal /%Ref.
    Sulfo-functionalized SiO2Pr-SBA-15
    Ar-SBA-15
    nn = 6∶170 ℃, 30 min79, 82.5, respectively[46]
    Sulfo-functionalized polymersMP-SO3H-24nn = 5∶1room temperature, 30 min9498.5[47]
    Mesoporous titanium phosphateM-TiPO-Xnn = 8∶150 ℃, 4 h91.394.7[48]
    Mesoporous foam materialsCS-MCFnn = 2∶140 ℃, 180 min8799[49]
    Modified metal oxidesMo(VI)/ ZrO2nn = 6∶160 ℃, 8 min9898[50]
    M-NiAlPO4nn = 8∶180 ℃, 1 h75.4475.12[51]
    ZeoliteH-Beta-1nn = 2∶1room temperature, 2 h8698.5[52]
    dealuminated BEA Zeolitenn = 1∶130 ℃, 30 min80100[53]
    下载: 导出CSV

    表  4  黏土催化剂在甘油缩酮化反应中的反应及相关反应参数

    Table  4  Reaction results and related parameters of clay catalyst in the ketalization of glycerol

    Clay catalystMolar ratio of raw materials (acetone:glycerol)Reaction conditionsConversion of glycerin /%Selectivity of solketal /%Ref.
    Montmorillonite/clayHNO3 modified montmorillonitenn = 4∶125 ℃, 10 min9495.4[58]
    K10 montmorillonitenn = 6∶140 ℃, p=600 psi, WHSV=4 h−169[59]
    K10 montmorillonitenn = 6∶130 ℃, 2 h8785[61]
    下载: 导出CSV

    表  5  阳离子交换树脂在甘油缩酮化反应中的反应及相关反应参数

    Table  5  Reaction results and related parameters of cation exchange resin in the ketalization of glycerol

    Cation exchange resin catalystMolar ratio of
    raw materials
    (acetone:glycerol)
    Reaction conditionsConversion of
    glycerin /%
    Selectivity of
    solketal /%
    Ref.
    Cation exchange
    resin
    Amberlyst-46nn = 6∶160 ℃, 30 min8497[7]
    purolite®PD206nn = 5∶120 ℃, p = 12 MPa, 0.1 mL/min acetone feed95100[62]
    KU-2-8nn = 5∶135 ℃, CH3CH2OH as solvent83.7[63]
    Amberlyst-15nn = 3∶160 ℃, 3 h87.41[64]
    DT-851nn = 20∶158 ℃, 2 h9599[65]
    Amberlyst-35nn = 2∶125−45 ℃, CH3CH2OH as solvent74[66]
    下载: 导出CSV

    表  6  其他类型催化剂在甘油缩酮化反应中的反应及相关反应参数

    Table  6  Reaction results and related parameters of other types of catalysts in the ketalization of glycerol

    Other catalystMolar ratio of raw materials (acetone: glycerol)Reaction conditionsConversion of glycerin /%Selectivity of solketal /%Ref.
    Other types of catalystsSnO2, MoO3/SnO2, WO3/SnO2nn = 1∶1room temperature, 90 min15, 55 and 61, respectively96[2]
    Heteropoly acid saltnn = 12∶1room temperature, 1 h9997[33]
    V-MCM-41nn = 6.5∶160 ℃, 1 h9080[42]
    Ionic liquidsnn = 15∶1room temperature, 30 min,
    0.2 mol% of BAIL
    10098[67]
    Pressurized CO2nn = 2∶1118 ℃, 5 h; p = 4.22 MPa61[68]
    下载: 导出CSV
  • [1] MOREIRA A B F, BRUNO A M, SOUZA M M V M, MANFRO R L. Continuous production of lactic acid from glycerol in alkaline medium using supported copper catalysts[J]. Fuel Process Technol,2016,144:170−180. doi: 10.1016/j.fuproc.2015.12.025
    [2] MALLESHAM B, SUDARSANAM P, RAJU G, REDDY B M. Design of highly efficient Mo and W-promoted SnO2 solid acids for heterogeneous catalysis: acetalization of bio-glycerol[J/OL]. Green Chem, 2013, 15, 478−489.
    [3] 徐浩, 李洋, 夏成康, 何瑞宁, 邹昀, 童张法. 吡啶硫酸氢盐离子液体催化甘油与乙酸酯化反应动力学[J]. 化工学报,2020,71(11):5178−5187.

    Xu Hao, Li Yang, Xia Cheng-kang, ZOU Yun, TONG Zhang-fa. Kinetics of esterification of glycerol with acetic acid catalyzed by pyridine bisulfate ionic liquid[J]. CIESC J,2020,71(11):5178−5187.
    [4] KOWALSKA-KUS J, HELD A, FRANKOWSKI M, NOWINSKA K. Solketal formation from glycerol and acetone over hierarchical zeolites of different structure as catalysts[J]. J Mol Catal A: Chem,2017,426:205−212. doi: 10.1016/j.molcata.2016.11.018
    [5] 黄文恒, 刘旭浩. 利用固体催化剂制备丙酮缩甘油的工艺研究[J]. 广州化工,2017,45(3):39−41. doi: 10.3969/j.issn.1001-9677.2017.03.016

    HUANG Wen-heng, LIU Xu-hao. Technical study on condensation of solketal by solid catalyst[J]. Guangzhou Chem Ind,2017,45(3):39−41. doi: 10.3969/j.issn.1001-9677.2017.03.016
    [6] NANDA M R, ZHANG Y S, YUAN Z S, QIN W S, GHAZIASKAR H S, XU C B. Catalytic conversion of glycerol for sustainable production of solketal as a fuel additive: areview[J]. Renewable Sustainable Energy Rev,2016,56:1022−1031. doi: 10.1016/j.rser.2015.12.008
    [7] ILGEN O, YERLIKAYA S, AKYUREK F O. Synthesis of solketal from glycerol and acetone over amberlyst-46 to produce an oxygenated fuel additive[J]. Period Polytech-Chem,2017,61(2):144−148.
    [8] 袁冰, 刘天, 于世涛. 氧化硅载体对基于杂多类离子液体催化体系的甘油氢解反应研究[J]. 燃料化学学报,2014,42(10):1218−1224. doi: 10.3969/j.issn.0253-2409.2014.10.010

    YUAN Bing, LIU Tian, YU Shi-tao. Hydrogenolysis of glycerol over a catalytic system based on heteropoly ionic liquid[J]. J Fuel Chem Technol,2014,42(10):1218−1224. doi: 10.3969/j.issn.0253-2409.2014.10.010
    [9] ZHU S H, QUI Y A, ZHU Y L, HAO S L, ZHENG H Y, LI Y W. Hydrogenolysis of glycerol to 1,3-propanediol over bifunctional catalysts containing Pt and heteropolyacids[J]. Catal Today,2013,212:120−126. doi: 10.1016/j.cattod.2012.09.011
    [10] 周洁, 赵宁, 肖福魁, 魏伟, 孙于罕. Bi-Pt催化剂在H-mordenite载体上的甘油选择性氧化[J]. 燃料化学学报,2012,40(11):1323−1327. doi: 10.3969/j.issn.0253-2409.2012.11.007

    ZHOU Jie, ZHAO Ning, XIAO Fu-kui, WEI Wei, SUN Yu-han. Selective oxidation of glycerol over Bi-Pt catalyst on H-mordenite[J]. J Fuel Chem Technol,2012,40(11):1323−1327. doi: 10.3969/j.issn.0253-2409.2012.11.007
    [11] LIEBIG C, PAUL S, KATRYNIOK B, GUILLON C, COUTURIER J-L, DUBOIS J-L, DUMEIGNIL F, HOELDERICH W F. Glycerol conversion to acrylonitrile by consecutive dehydration over WO3/TiO2 and ammoxidation over Sb-(Fe, V)-O[J]. Appl Catal B: Environ,2013,132 − 133:170−182. doi: 10.1016/j.apcatb.2012.11.035
    [12] KUBIČKA D, KUBIČKOVÁ I, ČEJKA J. Application of molecular sieves in transformations of biomass and biomass-derived feedstocks[J]. Catal Rev: Sci Eng,2013,55(1):1−78. doi: 10.1080/01614940.2012.685811
    [13] TSHIBALONZA N N, MONBALIU J C M. Revisiting the deoxydehydration of glycerol towards allyl alcohol under continuous-flow conditions[J]. Green Chem,2017,19:3006−3013. doi: 10.1039/C7GC00657H
    [14] ZHOU J X, WANG Y, GUO X W, MAO J B, ZHANG S G. Etherification of glycerol with isobutene on sulfonated graphene: reaction and separation[J]. Green Chem,2014,16(11):4669−4679. doi: 10.1039/C4GC01044B
    [15] CELDEIRA P A, GONÇALVES M, FIGUEIREDO F C A, BOSCO S M D, MANDELLI D, CARVALHO W A. Sulfonated niobia and pillared clay as catalysts in etherification reaction of glycerol[J]. Appl Catal A: Gen,2014,478:98−106. doi: 10.1016/j.apcata.2014.03.037
    [16] BRUNO A M, CHAGAS C A, SOUZA M M V M, MANFRO R L. Lactic acid production from glycerol in alkaline medium using Pt-based catalysts in continuous flow reaction system[J]. Renewable Energy,2018,118:160−171. doi: 10.1016/j.renene.2017.11.014
    [17] RASTEGARI H, GHAZIASKAR H S, YALPANI M, SHAFIEI A. Development of a continuous system based on azeotropic reactive distillation to enhance triacetin selectivity in glycerol esterification with acetic acid[J]. Energy Fuels,2017,31(8):8256−8262. doi: 10.1021/acs.energyfuels.7b01068
    [18] FUJITA S, YAMANISHI Y, ARAI M. Synthesis of glycerol carbonate from glycerol and urea using zinc-containing solid catalysts: A homogeneous reaction[J]. J Catal,2013,297:137−141. doi: 10.1016/j.jcat.2012.10.001
    [19] SERAFIM H, FONSECA I M, RAMOS A M, VITAL J, CASTANHEIRO J E. Valorization of glycerol into fuel additives over zeolites as catalysts[J]. Chem Eng J,2011,178:291−296. doi: 10.1016/j.cej.2011.10.004
    [20] FERREIRA P, FONSECA I M, RAMOS A M, VITAL J, CASTANHEIRO J E. Valorisation of glycerol by condensation with acetone over silica-included heteropolyacids[J]. Appl Catal B: Environ,2010,98(1/2):94−99. doi: 10.1016/j.apcatb.2010.05.018
    [21] 张亨杰. 碳基固体酸催化剂催化合成丙酮缩甘油的研究[D]. 杭州: 浙江大学, 2019.

    ZHANG Heng-jie. Study on catalytic synthesis of solketal by carbon-based solid acid catalyst[D]. Hangzhou: Zhejiang University, 2019.
    [22] ALVAREZ M G, FREY A M, BITTER J H, SEGARRA A M, JONG K P, MEDINA F. On the role of the activation procedure of supported hydrotalcites for basecatalyzed reactions: Glycerol to glycerol carbonate and self-condensation of acetone[J]. Appl Catal B: Environ,2013,134−135:231−237. doi: 10.1016/j.apcatb.2013.01.011
    [23] 黎学文. 新型固体酸催化剂的制备及其在甘油丙酮缩醛反应中的应用[D]. 杭州: 浙江大学, 2019.

    LI Xue-wen. Synthesis of novel solid acid catalysts and its application for the acetalization of glycerol with acetone[D]. Hangzhou: Zhejiang university, 2019.
    [24] CALMANTI R, GALVAN M, AMADI E, PEROSA A, SELVA M. High-temperature batch and continuous-flow transesterification of alkyl and enol esters with glycerol and its acetal derivatives[J]. ACS Sustainable Chem Eng,2018,6(3):3964−3973. doi: 10.1021/acssuschemeng.7b04297
    [25] BARBOSA S L, LIMA P C, SANTOS W T P, KLEIN S I, CLOSOSKI G C, CAIRES F J. Oxygenated biofuels: Synthesis of fatty acid solketal esters with a mixture of sulfonated silica and (Bu4N)(BF4) catalyst[J]. Catal Commun,2019,120:76−79. doi: 10.1016/j.catcom.2018.12.005
    [26] SAMOILOV V O, NI D S, GONCHAROVA A V, KNYAZEVA M I, RAMAZANOV D N, MAKSIMOV A L. Catalytic hydrogenolysis of solketal on bifunctional catalysts with production of high octane components of motor fuels[J]. Russ J Appl Chem,2020,93:108−117. doi: 10.1134/S1070427220010127
    [27] HOF R P, KELLOGG R M. Synthesis and lipase-catalyzed resolution of 5-(hydroxymethyl)-1, 3-dioxolan-4-ones: masked glycerol analogs as potential building blocks for pharmaceuticals[J]. J Org Chem,1996,61(10):3423−3427. doi: 10.1021/jo952021v
    [28] KOWALSKA-KUS J, HELD A, NOWINSKA K. Enhancement of the catalytic activity of H-ZSM-5 zeolites for glycerol acetalization by mechanical grinding[J]. React Kinet Mech Catal,2016,117:341−352. doi: 10.1007/s11144-015-0922-4
    [29] 雒京, 李洪广, 赵宁, 王峰, 肖福魁. 磺化Salen金属配合物插层水滑石选择性催化氧化甘油制备二羟基丙酮的研究[J]. 燃料化学学报,2015,43(6):677−683. doi: 10.3969/j.issn.0253-2409.2015.06.006

    LUO Jing, LI Hong-guang, ZHAO Ning, WANG Feng, XIAO Fu-kui. Selective oxidation of glycerol to dihydroxyacetone over layer double hydroxide intercalate d with sulfonato-salen metal complexes[J]. J Fuel Chem Technol,2015,43(6):677−683. doi: 10.3969/j.issn.0253-2409.2015.06.006
    [30] FISCHER E. Ueber die verbindungen der zucker mit den alkoholen und ketonen[J]. Untersuchungen Über Kohlenhydrate und Fermente,1909,734−735.
    [31] JACOBSON M, ACREE F. An improved method for the preparation of 1-isobutyryl-2-phenylhydrazine[J]. J Am Chem Soc,1945,67(9):1621.
    [32] SURIYAPRAPADILOK N, KITIYANAN B. Synthesis of solketal from glycerol and its reaction with benzyl alcohol[J]. Energy Procedia,2011,9:63−69.
    [33] SILVA M J, TEIXEIRA M G, CHAVES D M, SIQUEIRA L. An efficient process to synthesize solketal from glycerol over tin (II) silicotungstate catalyst[J]. Fuel,2020,281:118724.
    [34] MENEZES F D L, GUIMARAES M D O, SILVA M J. Highly selective SnCl2-catalyzed solketal synthesis at room temperature[J]. Ind Eng Chem Res,2013,52(47):16709−16713. doi: 10.1021/ie402240j
    [35] SILVA M J, RODRIGUES F A, JÚLIO A A. SnF2-catalyzed glycerol ketalization: A friendly environmentally process to synthesize solketal at room temperature over on solid and reusable Lewis acid[J]. Chem Eng J,2017,307:828−835. doi: 10.1016/j.cej.2016.09.002
    [36] ESPOSITO R, CUCCIOLITO M E, D'AMORA A, GUIDA R D, MONTAGNARO F, RUFFO F. Highly efficient iron(III) molecular catalysts for solketal production[J]. Fuel Process Technol,2017,167:670−673. doi: 10.1016/j.fuproc.2017.08.018
    [37] SILVA M J, RODRIGUES A A, PINHEIRO P F. Solketal synthesis from glycerol and acetone in the presence of metal salts: A lewis or Brønsted acid catalyzed reaction[J]? Fuel, 2020, 276: 118164.
    [38] NARKHEDE N, PATEL A. Room temperature acetalization of glycerol to cyclic acetals over anchored silicotungstates under solvent free conditions[J]. RSC,2014,4:19294−19301.
    [39] OZORIO L P, PIANZOLLI R, MOTA M B S, MOTA C J A. Reactivity of glycerol/acetone ketal (solketal) and glycerol/formaldehyde acetals toward acid-catalyzed hydrolysis[J]. J Brazil Chem Soc,2012,23(5):931−937. doi: 10.1590/S0103-50532012000500019
    [40] VOL’EVA V B, BELOSTOTSKAYA I S, MALKOVA A V, KOMISSAROVA N L, KURKOVSKAYA L N, USACHEV S V, MAKAROV G G. New approach to the synthesis of 1, 3-Dioxolanes[J]. Russ J Org Chem,2012,48:638−641. doi: 10.1134/S1070428012050028
    [41] ABREU T H, MEYER C I, PADRÓ C, MARTINS L. Acidic V-MCM-41 catalysts for the liquid-phase ketalization of glycerol with acetone[J/OL]. Microporous Mesoporous Mater, 2019, 273: 219-225.
    [42] DOMÍNGUEZ-BARROSO V, HERRERA C, LARRUBIA M Á, GONZÁLEZ-GIL R, CORTÉS-REYES M, ALEMANY L J. Continuous-flow process for glycerol conversion to solketal using a Brönsted acid functionalized carbon-based catalyst[J]. Catalysts,2019,9(7):609. doi: 10.3390/catal9070609
    [43] LI L, KORÁNYI T I, SELS B F, PESCARMONA P P. Highly-efficient conversion of glycerol to solketal over heterogeneous Lewis acid catalysts[J/OL]. Green Chem, 2012, 14, 1611-1619.
    [44] VASANTHA V T, VENKATESHA N J, SHAMSHUDDIN S Z M, D’SOUZA J Q, REDDY B G V. Sulphated zirconia supported on cordierite honeycomb monolith for effective synthesis of solketal from acetalisation of glycerol with acetone[J]. ChemistrySelect,2018,3:602 − 608. doi: 10.1002/slct.201702186
    [45] KHAYOON M S, HAMEED B H. Solventless acetalization of glycerol with acetone to fuel oxygenates over Ni-Zr supported mesoporous carbon catalyst[J]. Appl Catal A: Gen,2013,464−465:191−199. doi: 10.1016/j.apcata.2013.05.035
    [46] VICENTE G, MELERO J A, MORALES G, PANIAGUA M, MARTÍN E. Acetalisation of bio-glycerol with acetone to produce solketal over sulfonic mesostructured silicas[J/OL]. Green Chem, 2010, 10: 899−907.
    [47] CHURIPARD S R, MANJUNATHAN P, CHANDRA P, SHANBHAG G V, RAVISHANKAR R, RAO P V C, GANESH G S, HALGERI A B, MARADUR S P. Remarkable catalytic activity of a sulfonated mesoporous polymer (MP-SO3H) for the synthesis of solketal at room temperature[J/OL]. New J Chem, 2017, 41: 5745−5751.
    [48] MIAO Z C, LI Z B, LIANG M F, MENG J, ZHAO Y Z, XU L L, MU J L, ZHOU J, ZHUO S P, SI W J. Ordered mesoporous titanium phosphate material: a highly efficient, robust and reusable solid acid catalyst for acetalization of glycerol[J]. Chem Eng J,2020,381:122594. doi: 10.1016/j.cej.2019.122594
    [49] STAWICKA K, DÍAZ-ÁLVAREZ A E, CALVINO-CASILDA V, TREJDA M, BAÑARES M A, ZIOLEK M. The role of Brønsted and Lewis acid sites in acetalization of glycerol over modified mesoporous cellular foams[J]. J Phys Chem C,2016,120(30):16699−16711. doi: 10.1021/acs.jpcc.6b04229
    [50] REENA S S, SHAMSHUDDIN S Z M, VASANTHA V T, D’SOUZA J Q. Synthesis of solketal over zirconia based acid catalysts[J]. Bangl J Sci Ind Res,2019,54(1):31−38. doi: 10.3329/bjsir.v54i1.40728
    [51] ZHANG S, ZHAO Z, AO Y. Design of highly efficient Zn-, Cu-, Ni- and Co-promoted M-AlPO4 solid acids: the acetalization of glycerol with acetone[J]. Appl Catal A: Gen,2015,496:32−39. doi: 10.1016/j.apcata.2015.02.006
    [52] MANJUNATHAN P, MARADUR S P, HALGERI A B, SHANBHAG G V. Room temperature synthesis of solketal from acetalization of glycerolwith acetone: effect of crystallite size and the role of acidity of betazeolite[J]. J Mol Catal A: Chem,2015,396:47−54. doi: 10.1016/j.molcata.2014.09.028
    [53] VENKATESHA N J, BHAT Y S, PRAKASH B S J. Dealuminated BEA zeolite for selective synthesis of five-membered cyclic acetal from glycerol under ambient conditions[J]. RSC,2016,6:18824−18833.
    [54] 郑伟, 陈佳玲, 郭立, 张文博, 赵浩然, 吴晓琴. 金属负载型分子筛催化剂在 NH3-SCR反应中水热稳定性的研究进展[J]. 燃料化学学报,2020,48(10):1193−1207. doi: 10.3969/j.issn.0253-2409.2020.10.006

    ZHENG Wei, CHEN Jia-ling, GUO Li, ZHANG Wen-bo, ZHAO Hao-ran, WU Xiao-qin. Research progress of hydrothermal stability of metal-based zeolite catalysts in NH3-SCR reaction[J]. J Fuel Chem Technol,2020,48(10):1193−1207. doi: 10.3969/j.issn.0253-2409.2020.10.006
    [55] MANJUNATHAN P, KUMAR M, CHURIPARD S R, SIVASANKARAN S, SHANBHAG G V, MARADUR S P. Catalytic etherification of glycerol to tert-butyl glycerol ethers using tert-butanol over sulfonic acid functionalized mesoporous polymer[J]. RSC,2016,6:82654−82660.
    [56] HE M L, XU J, MA Z H, YUAN H, MA J Z. Facile synthesis of acid mesoporous fluoropolymer as water-tolerant catalyst for esterification[J]. Microporous Mesoporous Mater,2015,211:30−37. doi: 10.1016/j.micromeso.2015.02.033
    [57] KUMAR S, PANDA A K, SINGH R K. Preparation and characterization of acids and alkali treated kaolin clay[J]. Bull Chem Rea Eng Catal,2013,8(1):61−69.
    [58] TIMOFEEVA M N, PANCHENKO V N, KRUPSKAYA V V, GIL A, VICENTE M A. Effect of nitric acid modification of montmorillonite clay on synthesis of solketal from glycerol and acetone[J]. Catal Commun,2017,90:65−69. doi: 10.1016/j.catcom.2016.11.020
    [59] NANDA M R, YUAN Z S, QIN V S, GHAZIASKAR H S, POIRIER M A, XU C B. A new continuous-flow process for catalytic conversion of glycerol to oxygenated fuel additive: catalyst screening[J]. Appl Energy,2014,123:75−81. doi: 10.1016/j.apenergy.2014.02.055
    [60] KRUPSKAYA V V, ZAKUSIN S V, TYUPINA E A, DORZHIEVA O V, ZHUKHLISTOV A P, BELOUSOV P E, TIMOFEEVA M N. Experimental study of montmorillonite structure and transformation of its properties under treatment with inorganic acid solutions[J]. Minerals,2017,7(4):49. doi: 10.3390/min7040049
    [61] SANDESH S, HALGERI A B, SHANBHAG G V. Utilization of renewable resources: Condensation of glycerol with acetone at room temperature catalyzed by organic-inorganic hybrid catalyst[J]. J Mol Catal A: Chem,2015,401:73−80. doi: 10.1016/j.molcata.2015.02.015
    [62] SHIRANI M, GHAZIASKAR H S, XU C B. Optimization of glycerol ketalization to produce solketal as biodiesel additive in a continuous reactor with subcritical acetone using Purolite®PD206 as catalyst[J]. Fuel Process Technol,2014,124:206−211. doi: 10.1016/j.fuproc.2014.03.007
    [63] DMITRIEV G S, TEREKHOV A V, KHADZHIEV S N, ZANAVESKIN L N. Specific features of solketal synthesis on KU-2-8 cation-exchange resin[J]. Russ J Appl Chem,2016,89:45−50. doi: 10.1134/S1070427216010079
    [64] SULISTYO H, HAPSARI I, BUDHIJANTO, SEDIAWAN W B, RAHAYU S S, AZIS M M. Heterogeneous catalytic reaction of glycerol with acetone for solketal production[C]. Matec Web of Conferences, 2019, 268: 07004.
    [65] YANG J, LI N, MA W J, ZHOU J H, SUN H Z. Synthesis of solketal with catalyst sulfonic acid resin[J/OL]. Adv Mater Res, 2014, 830: 176−179.
    [66] NANDA M R, YUAN Z S, QIN W S, GHAZIASKAR H S, POIRIER M A, XU C B. Thermodynamic and kinetic studies of a catalytic process to convert glycerol into solketal as an oxygenated fuel additive[J]. Fuel,2014,117:470−477. doi: 10.1016/j.fuel.2013.09.066
    [67] GUI Z Y, ZAHRTMANN N, SARAVANAMURUGAN S, REYERO I, QI Z W, A. BAÑARES M, RIISAGER A, GARCIA-SUAREZ E J. Brønsted acid ionic liquids (BAILs) as efficient and recyclable catalysts in the conversion of glycerol to solketal at room temperature[J/OL]. ChemistrySelect, 2016, 1(18): 5869−5873.
    [68] NASCIMENTO J A C, PINTO B P, CALADO V M A, MOTA C J A. Synthesis of solketal fuel additive from acetone and glycerol using CO2 as switchable catalyst[J]. Front Energy Res,2019,7:58. doi: 10.3389/fenrg.2019.00058
    [69] SILVA M J, RODRIGUES A A, TEIXEIRA M J. Iron (III) silicotungstate: an efficient and recyclable catalyst to converting glycerol to solketal[J]. Energy Fuels,2020,34(8):9664−9673. doi: 10.1021/acs.energyfuels.0c01446
    [70] 肖泽, 常春, 白净, 陈俊英, 李攀, 韩秀丽. 生物质基甘油缩醛和缩酮的合成研究进展[J]. 生物质化学工程,2019,53(6):51−58. doi: 10.3969/j.issn.1673-5854.2019.06.009

    XIAO Ze, CHANG Chun, BAI Jing, CHEN Jun-ying, LI Pan, HAN Xiu-li. Progress in the synthesis of biomass-based glycerol acetals and ketals[J]. Biomass Chem Eng,2019,53(6):51−58. doi: 10.3969/j.issn.1673-5854.2019.06.009
    [71] SILVA C X A, GONÇALVES V L C, MOTA C J A. Water-tolerant zeolite catalyst for the acetalisation of glycerol[J]. Green Chem,2009,11:38−41. doi: 10.1039/B813564A
    [72] CALVINO-CASILDA V, STAWICKA K, TREJDA M, ZIOLEK M, BAÑARES M A. Real-time raman monitoring and control of the catalytic acetalization of glycerol with acetone over modified mesoporous cellular foams[J]. J Phys Chem C,2014,118(20):10780−10791. doi: 10.1021/jp500651e
    [73] LI Z B, MIAO Z C, WANG X, ZHAO J P, ZHOU J, SI W J, ZHUO S P. One-pot synthesis of ZrMo-KIT-6 solid acid catalyst for solvent-free conversion of glycerol to solketal[J]. Fuel,2018,233:377−387. doi: 10.1016/j.fuel.2018.06.081
    [74] ESTEBAN J, LADERO M, GARCÍA-OCHOA F. Kinetic modelling of the solventless synthesis of solketal with a sulphonic ion exchange resin[J]. Chem Eng J,2015,269:194−202. doi: 10.1016/j.cej.2015.01.107
    [75] MOREIRA M N, FARIA R P V, RIBEIRO A M, RODRIGUES A E. Solketal production from glycerol ketalization with acetone: catalyst selection and thermodynamic and kinetic reaction study[J]. Ind Eng Chem Res,2019,58(38):17746−17759. doi: 10.1021/acs.iecr.9b03725
    [76] ROSSA V, PESSANHA Y S P, DÍAZ G C, CÂMARA L D T, PERGHER S B C, ARANDA D A G. Reaction kinetic study of solketal production from glycerol ketalization with acetone[J/OL]. Ind Eng Chem Res, 2017, 56(2): 479−488.
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  2609
  • HTML全文浏览量:  347
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-12
  • 修回日期:  2021-06-11
  • 网络出版日期:  2021-06-25
  • 刊出日期:  2021-12-29

目录

    /

    返回文章
    返回