留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子层沉积制备纳米催化剂研究进展

裴永丽 郭长江 张宁 权燕红 任军

裴永丽, 郭长江, 张宁, 权燕红, 任军. 原子层沉积制备纳米催化剂研究进展[J]. 燃料化学学报(中英文), 2021, 49(9): 1281-1293. doi: 10.19906/j.cnki.JFCT.2021068
引用本文: 裴永丽, 郭长江, 张宁, 权燕红, 任军. 原子层沉积制备纳米催化剂研究进展[J]. 燃料化学学报(中英文), 2021, 49(9): 1281-1293. doi: 10.19906/j.cnki.JFCT.2021068
PEI Yong-li, GUO Chang-jiang, ZHANG Ning, QUAN Yan-hong, REN Jun. The progress in nanocatalyst preparation with atomic layer deposition technology[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1281-1293. doi: 10.19906/j.cnki.JFCT.2021068
Citation: PEI Yong-li, GUO Chang-jiang, ZHANG Ning, QUAN Yan-hong, REN Jun. The progress in nanocatalyst preparation with atomic layer deposition technology[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1281-1293. doi: 10.19906/j.cnki.JFCT.2021068

原子层沉积制备纳米催化剂研究进展

doi: 10.19906/j.cnki.JFCT.2021068
基金项目: 国家自然科学基金(21776194)和山西省自然科学基金(201901D211055)资助
详细信息
    作者简介:

    裴永丽:402441090@qq.com

    通讯作者:

    Tel: 0351-6018598, E-mail: quanyanhong@tyut.edu.cn

    renjun@tyut.edu.cn

  • 中图分类号: O643.36

The progress in nanocatalyst preparation with atomic layer deposition technology

Funds: The project was supported by the National Science Foundation of China (21776194) and the Natual Science Foundation of Shanxi Province of China (201901D211055)
More Information
  • 摘要: 纳米催化正在面临技术上的革命,对金属纳米颗粒的尺寸分布及形貌结构等的精准控制提出了更高的要求,原子层沉积(ALD)由于可实现原子尺度的精准控制而为这一问题的解决提供了参考。本文综述了ALD技术在纳米催化中的研究进展,回顾了ALD的发展历史、基本原理和主要设备及工艺,介绍了ALD常见底物及得到的催化剂结构类型。重点阐述了ALD所得催化剂的分类及其在热催化、电催化及光催化领域中的应用。分析了ALD目前面临的挑战,并对未来发展进行了展望。
  • FIG. 913.  FIG. 913.

    FIG. 913.  FIG. 913.

    图  1  近50年发表的与ALD相关的文献数量

    Figure  1  Number of literatures about ALD in recent 50 years

    图  2  ALD技术过程示意图[36]

    Figure  2  Schematic representation of ALD technology[36]

    图  3  (a)批量式,(b)流化床式,(c)直接写入式,(d)空间,(e)滚轴式ALD工艺技术示意图[41]

    Figure  3  Schematic representation of (a) batch ALD, (b) ALD with a fluidized bed reactor, (c) direct-write ALD, (d) special ALD and (e) cart-wheel ALD technology[41]

    图  4  (a)自由基增强,(b)直接等离子体及(c)远程等离子原子层沉积设备构造示意图[41]

    Figure  4  Schematic diagram of (a) radical-enhanced, (b) direct plasma and (c) remote plasma ALD[41]

    图  5  模板辅助ALD合成TiO2/Pt和CoOx/TiO2/Pt催化剂过程示意图[59]

    Figure  5  Schematic for TiO2/Pt and CoOx/TiO2/Pt catalysts prepared by template-assisted ALD[59]

    图  6  CeO2/Pd@MIL-53(Al)三明治结构催化剂的形成示意图[60]

    Figure  6  Synthetic process of CeO2/Pd@MIL-53(Al) sandwich-structured catalyst[60]

    图  7  Ni/Al2O3和Pt/TiO2串联催化剂合成过程的示意图以及不同催化剂的半剖视图[61]

    Figure  7  Synthetic process of the tandem catalyst with both Ni/Al2O3 and Pt/TiO2 interfaces and semi-sectional views of different catalysts for comparison[61]

    图  8  在多相催化中应用ALD生长的氧化物(红色)和金属(蓝色)[34]

    Figure  8  Metal oxidation (red) and metal (blue) prepared by ALD in heterogeneous catalysis[34]

    图  9  无((a)−(b))及有((c)−(d))ALD Al2O3保护层的Pd/Al2O3催化剂及其在乙烷催化氧化脱氢反应中的示意图[65]

    Figure  9  A schematic model of Pd/Al2O3 catalysts without ((a)−(b)) and with ((c)−(d)) ALD Al2O3 overcoat during the catalytic oxidative dehydrogenation of ethane reaction at 675 ℃[65]

    图  10  A(a)Pd1/石墨烯制备流程及((b)-(d))HAADF-STEM表征[70],B ABC型ALD工艺流程图[71]

    Figure  10  A (a) Schematic illustration and ((b)-(d)) HAADF-STEM of Pd1/graphene catalysts[70], and B schematic model of ABC-type ALD[71]

    图  11  (a)Pt2/石墨烯[73]及(b)Pt-Ru/氮掺杂碳纳米管[74]制备流程示意图

    Figure  11  Schematic illustration of bottom-up synthesis of dimeric Pt2/graphene[73] (a) and ALD synthesis of Pt-Ru dimers on nitrogen-doped carbon nanotubes (NCNTs)[74] (b)

    图  12  旋涂-ALD制备Fe2O3-Bi2WO6电极流程示意图[75]

    Figure  12  Schematic illustration of Fe2O3-Bi2WO6 electrode fabrication using spin-coating (step-1) and atomic layer deposition (step-2)[75]

    图  13  有、无Ca2TiO3薄膜的Ni/MgAl2O4催化剂在甲烷重整反应中抗积炭能力示意图[78]

    Figure  13  Schematic model of Ni/MgAl2O4 catalysts with and without ALD Ca2TiO3 layer and its coking resistance in the methane reforming reaction[78]

  • [1] ZAERA F. Nanostructured materials for applications in heterogeneous catalysis[J]. Chem Soc Rev,2013,42(7):2746−2762. doi: 10.1039/C2CS35261C
    [2] BURD C, CHEN X B, NARAYANAN R, El-SAYED M A. Chemistry and properties of nanocrystals of different shapes[J]. Chem Rev,2005,105(4):1025−1102. doi: 10.1021/cr030063a
    [3] TANG M, YUAN W T, OU Y, LI G X, YOU R Y, LI S D, YANG H S, ZHANG Z, WANG Y. Recent progresses on structural reconstruction of nanosized metal catalysts via controlled-atmosphere transmission electron microscopy: A review[J]. ACS Catal,2020,10:14419−14450. doi: 10.1021/acscatal.0c03335
    [4] ALEXIS T B. The impact of nanoscience in heterogeneous catalysis[J]. Science,2003,299:1688−1691. doi: 10.1126/science.1083671
    [5] KITANO M, INOUE Y, YAMAZAKI Y, HAYASHI F, KANBARA S, MATSUISHI S, YOKOYAMA T, KIM S, HARA M, HOSONO H. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store[J]. Nat Chem,2012,4(11):934−940. doi: 10.1038/nchem.1476
    [6] REN M J, REN J, HAO P P, YANG J Z, WANG D L, PEI Y L, L J Y, LI Z. Influence of microwave irradiation on the structural properties of carbon-supported hollow copper nanoparticles and their effect on the synthesis of dimethyl carbonate[J]. ChemCatChem,2016,8(4):861−871. doi: 10.1002/cctc.201501182
    [7] LI Y, SHEN W J. Morphology-dependent nanocatalysts: Rod-shaped oxides[J]. Chem Soc Rev,2014,43(5):1543−1574. doi: 10.1039/C3CS60296F
    [8] HARUTA M, KOBAYASHI T, SANO H, YAMADA N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 ℃[J]. Chem Lett,1987,16(2):405−408. doi: 10.1246/cl.1987.405
    [9] 包信和. 催化基础理论研究发展浅析-兼述催化中的限域效应(代序)[J]. 中国科学: 化学,2012,42(4):355−362. doi: 10.1360/032012-130

    BAO Xin-he. Fundamental research in catalysis with emphasis on confinement effects[J]. Sci Sin Chim,2012,42(4):355−362. doi: 10.1360/032012-130
    [10] PAN X L, BAO X H. The effects of confinement inside carbon nanotubes on catalysis[J]. Acc Chem Res,2011,44(8):553−562. doi: 10.1021/ar100160t
    [11] LI S R, GONG J L. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions[J]. Chem Soc Rev,2014,43(21):7245−7256. doi: 10.1039/C4CS00223G
    [12] WU Y E, WANG D S, LI Y D. Understanding of the major reactions in solution synthesis of functional nanomaterials[J]. Sci China Mater,2016,59(11):938−996. doi: 10.1007/s40843-016-5112-0
    [13] YIN P Q, YAO T, WU Y E, ZHENG L R, LIN Y, LIU W, JU H X, ZHU J F, HONG X, DDENG Z X, ZHOU G, WEI S Q, LI Y D. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angew Chem,2016,55(36):10800−10805. doi: 10.1002/anie.201604802
    [14] JONES J, XIONG H F, DELARIVA A T, PETERSON E J, PHAM H, CHALLA S R, QI G S, OH S, WIEBENGA M H, HERNANDEZ X I P, WANG Y, DATYE A K. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping[J]. Science,2016,353(6295):150−154. doi: 10.1126/science.aaf8800
    [15] LIU J Y. Catalysis by supported single metal atoms[J]. ACS Catal,2017,7(1):34−59. doi: 10.1021/acscatal.6b01534
    [16] QIAO B T, WANG A Q, YANG X F, ALLARD L F, JIANG Z, CUI Y T, LIU J Y, LI J, ZHANG T. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nat Chem,2011,3(8):634−641. doi: 10.1038/nchem.1095
    [17] WU Z W, BUKOWSKI B C, LI Z, MILLIGAN C, ZHOU L, MA T, WU Y, REN Y, RIBEIRO F H, DELGASS W N, GREELEY J, ZHANG G H, MILLER J T M. Changes in catalytic and adsorptive properties of 2 nm pt3mn nanoparticles by subsurface atoms[J]. J Am Chem Soc,2018,140(44):14870−14877. doi: 10.1021/jacs.8b08162
    [18] HUA J L, WILDFIRE C, STIEGMAN A E, DAGLE R A, SHEKHAWAT D, ABDELSAYED V, BAI X W, TIAN H J, BOGLE M B, HSU C, LUO Y, DAVIDSON S D, WANG Y X. Microwave-driven heterogeneous catalysis for activation of dinitrogen to ammonia under atmospheric pressure[J]. Chem Eng J,2020,397:125388−125396. doi: 10.1016/j.cej.2020.125388
    [19] REN J, LIU S S, LI Z, LU X L, XIE K C. Oxidative carbonylation of methanol to dimethyl carbonate over CuCl/SiO2-TiO2 catalysts prepared by microwave heating: The effect of support composition[J]. Appl Catal A: Gen,2009,366(1):93−101. doi: 10.1016/j.apcata.2009.06.042
    [20] PUURUNEN R L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process[J]. J Appl Phys,2005,97(12):1−52.
    [21] GEORGE S M. Atomic layer deposition: an overview[J]. Chem Rev,2010,110(1):111−131. doi: 10.1021/cr900056b
    [22] SINGH J A, YANG N, BENT S. Nanoengineering heterogeneous catalysts by atomic layer deposition[J]. Annu Rev Chem Biomol Eng,2017,8:41−62. doi: 10.1146/annurev-chembioeng-060816-101547
    [23] PUURUNEN B R. A short history of atomic layer deposition: tuomo suntola’s atomic layer epitaxy[J]. Chem Vap Depos,2014,20:332−344. doi: 10.1002/cvde.201402012
    [24] DAMERON A A, DAVIDSON S D, BURTON B B, CARCIA P F, MCLEAN R S, GEORGE S M. Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition[J]. J Phys Chem C,2008,112(12):4573−4580. doi: 10.1021/jp076866+
    [25] PARSONS G N, GEORGE S M, KNEZ M, EDITORS G. Progress and future directions for atomic layer deposition and ALD-based chemistry[J]. MRS Bull,2011,36(11):865−871. doi: 10.1557/mrs.2011.238
    [26] SUN X, XIE M, TRAVIS J J, WANG G K, SUN H T, LIAN J, GEORGE S M. Pseudocapacitance of amorphous TiO2 thin films anchored to graphene and carbon nanotubes using atomic layer deposition[J]. J Phys Chem C,2013,117(44):22497−22508. doi: 10.1021/jp4066955
    [27] SUN X, ZHOU C G, XIE M, SUN H T, HU T, LU F Y, SCOTT S M, GEORGE S M, LIAN J. Synthesis of ZnO quantum dot/graphene nanocomposites by atomic layer deposition with high lithium storage capacity[J]. J Mater Chem A,2014,2(20):7319−7326. doi: 10.1039/C4TA00589A
    [28] YANG H M, CHEN Y, QIN Y. Application of atomic layer deposition in fabricating high-efficiency electrocatalysts[J]. Chin J Catal,2020,41(2):227−241. doi: 10.1016/S1872-2067(19)63440-6
    [29] GAO Z, DONG M, WANG G Z, SHENG P, WU Z W, YANG H M, ZHANG B, WANG G F, WANG J G, QIN Y. Multiply confined nickel nanocatalysts produced by atomic layer deposition for hydrogenation reactions[J]. Angew Chem,2015,54(31):9006−9010. doi: 10.1002/anie.201503749
    [30] GAO Z, QIN Y. Design and properties of confined nanocatalysts by atomic layer deposition[J]. Acc Chem Res,2017,50(9):2309−2316. doi: 10.1021/acs.accounts.7b00266
    [31] ZHANG B, QIN Y. Interface tailoring of heterogeneous catalysts by atomic layer deposition[J]. ACS Catal,2018,8(11):10064−10081. doi: 10.1021/acscatal.8b02659
    [32] LU J L, ELAM J W, STAIR P C. Atomic layer deposition - sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis[J]. Surf Sci Rep,2016,71(2):410−472. doi: 10.1016/j.surfrep.2016.03.003
    [33] LU J L, ELAM J W, STAIR P C. Synthesis and stabilization of supported metal catalysts by atomic layer deposition[J]. Acc Chem Res,2013,46(8):1806−1815. doi: 10.1021/ar300229c
    [34] STAIR P C. Synthesis of supported catalysts by atomic layer deposition[J]. Top Catal,2012,55:93−98. doi: 10.1007/s11244-012-9776-4
    [35] LU J L, LOW K B, LEI Y, LIBERA J A, NICHOLLS A, STAIR P C, ELAM J W. Toward atomically-precise synthesis of supported bimetallic nanoparticles using atomic layer deposition[J]. Nat Commun,2014,5:1−9.
    [36] ONEILL B J, JACKSON D H K., LEE J, CANLAS C, STAIR P C, MARSHALL C L, ELAM J W, KUECH T F, DUMESIC J A, HUBER G W. Catalyst design with atomic layer deposition[J]. ACS Catal,2015,5(3):1804−1825. doi: 10.1021/cs501862h
    [37] LEE W J, YUN E Y, LEE H B R, HONG S W, KWON S H. Ultrathin effective TiN protective films prepared by plasma-enhanced atomic layer deposition for high performance metallic bipolar plates of polymer electrolyte membrane fuel cells[J]. Appl Surf Sci,2020,519:146215−146224. doi: 10.1016/j.apsusc.2020.146215
    [38] POODT P, CAMERON D C, DICKEY E, GEORGE S M, KUZNETSOV V, PARSONS G N, ROOZEBOOM F, SUNDARAM G, VERMEER A. Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition[J]. J Vac Sci Technol, A,2012,30(1):010802−1-11. doi: 10.1116/1.3670745
    [39] LEE S, BAEK G, LEE J H, VAN T T N, ANSARI A S, SHONG B, PARK J S. Molecular layer deposition of indicone and organic-inorganic hybrid thin films as flexible transparent conductor[J]. Appl Surf Sci,2020,525:146383. doi: 10.1016/j.apsusc.2020.146383
    [40] VENKATASAMY V, JAYARAJU N, COX S M, THAMBIDURAI C, STICKNEY JL. Studies of Hg(1−x)CdxTe formation by electrochemical atomic layer deposition and investigations into bandgap engineering[J]. J Elecrochem Soc,2007,154(8):H720−725. doi: 10.1149/1.2745677
    [41] 李爱东. 原子层沉积技术-原理及其应用[M]. 北京: 科学出版社, 2016.

    LI Ai-dong. Atomic Layer Deposition-Its Principle and Applications[M]. Beijing: The Science Press, 2016.
    [42] 曹燕强, 李爱东. 等离子体增强原子层沉积原理与应用[J]. 加工、测量与设备,2012,49(7):483−490.

    CAO Yan-qiang, LI Ai-dong. Principle and applications of plasma enhanced atomic layer deposition[J]. Process, Meas Equip,2012,49(7):483−490.
    [43] YANG P, TONG X L, WANG G Z, GAO Z, GUO X Y, QIN Y. NiO/SiC nanocomposite prepared by atomic layer deposition used as a novel electrocatalyst for nonenzymatic glucose sensing[J]. ACS Appl Mater Interfaces,2015,7(8):4772−4777. doi: 10.1021/am508508m
    [44] CHEN H, CHEN J T, SHAO L, WANG L, FU X Z, LUO J L. Minimum and well-dispersed platinum nanoparticles on 3D porous nickel for highly efficient electrocatalytic hydrogen evolution reaction enabled by atomic layer deposition[J]. Appl Surf Sci,2019,494:1091−1099. doi: 10.1016/j.apsusc.2019.07.251
    [45] SUN J W, WANG X, SONG Y Y, WANG Q Q, SONG Y M, YUAN D, ZHANG L X. Atomic layer deposition of ultra-trace Pt catalysts onto a titanium nitride nanowire array for electrocatalytic methanol oxidation[J]. Chem Commun,2019,55(88):13283−13286. doi: 10.1039/C9CC06370F
    [46] SU C Y, LIU B H, LIN T J, CHI Y M, KEI C C, WANG K W, PERNG T P. Carbon nanotube-supported Cu3N nanocrystals as a highly active catalyst for oxygen reduction reaction[J]. J Mater Chem A,2015,3(37):18983−18990. doi: 10.1039/C5TA04383B
    [47] KAO E, PARK H S., ZANG X N, LIN L W. Atomic layer deposition of TiO2 nanocoatings on ZnO nanowires for improved photocatalytic stability[J]. Int J Photoenergy,2019,2019:1−9.
    [48] REN D, GAO J, PAN L F, WANG Z W, LUO J S, ZAKEERUDDIN S M, HAGFELDT A, GRÄTZEL M. Atomic layer deposition of zno on cuo enables selective and efficient electroreduction of carbon dioxide to liquid fuels[J]. Angew Chem,2019,58(42):15036−15040. doi: 10.1002/anie.201909610
    [49] KHALILY M A, PATIL B, YILMAZ E, UYAR T. Atomic layer deposition of pd nanoparticles on n-doped electrospun carbon nanofibers: optimization of orr activity of pd-based nanocatalysts by tuning their nanoparticle size and loading[J]. ChemNanoMat,2019,5(12):1540−1546. doi: 10.1002/cnma.201900483
    [50] DENG D H, NOVOSELOV K S, FU Q, ZHENG N F, TIAN Z Q, BAO X H. Catalysis with two-dimensional materials and their heterostructures[J]. Nat Nanotechnol,2016,11(3):218−230. doi: 10.1038/nnano.2015.340
    [51] LV P, ZHAO C Y, LEE W J, HUO S, KWON S H, FANG J, YANG Y. Less is more: Enhancement of photocatalytic activity of g-C3N4 nanosheets by site-selective atomic layer deposition of TiO2[J]. Appl Surf Sci,2019,494:508−518. doi: 10.1016/j.apsusc.2019.07.131
    [52] SUN L W, L K, ZHANG Z S, HU X F, TIAN H Y, ZHANG Y B, YANG X G. MnO2-Graphene-oxide-scroll-TiO2 composite catalyst for low-temperature NH3-SCR of NO with good steam and SO2 resistance obtained by low-temperature carbon-coating and selective atomic layer deposition[J]. Catal Sci Technol,2019,9(7):1602−1608. doi: 10.1039/C9CY00132H
    [53] JANG E, KIM D W, HONG S H, PARK Y M, PARK T J. Visible light-driven g-C3N4@ZnO heterojunction photocatalyst synthesized via atomic layer deposition with a specially designed rotary reactor[J]. Appl Surf Sci,2019,487:206−210. doi: 10.1016/j.apsusc.2019.05.035
    [54] WENG Z H, ZAERA F. Sub-monolayer control of mixed-oxide support composition in catalysts via atomic layer deposition: selective hydrogenation of cinnamaldehyde promoted by (SiO2-ALD)-Pt/Al2O3[J]. ACS Catal,2018,8(9):8513−8524. doi: 10.1021/acscatal.8b02431
    [55] LIN W W, CHEN H, LI J, CHEN K Q, LU X Y, OUYANG P K, FU J. Enhanced stability of Pt/C by the atomic layer deposition of porous MOx for the decarboxylation of oleic acid[J]. Catal Commun,2019,123:59−63. doi: 10.1016/j.catcom.2019.02.003
    [56] LI J Z, MAO N F, LI X, CHEN F F, LI Y W, JIANG K, HU Z G, CHU J H. Controllable fabrication of Bi2O3 nanoparticles by atomic layer deposition on TiO2 films and application in photodegradation[J]. Sol Energy Mater Sol Cells,2020,204:110218. doi: 10.1016/j.solmat.2019.110218
    [57] CAO K, CAI J M, LIU X CHEN R. Review article: catalysts design and synthesis via selective atomic layer deposition[J]. J Vac Sci Technol, A,2018,36(1):010801. doi: 10.1116/1.5000587
    [58] SEONG S, PARK I S, JUNG Y C, LEE T, KIM S Y, PARK J S, KO J H, AHN J. Synthesis of Ag-ZnO core-shell nanoparticles with enhanced photocatalytic activity through atomic layer deposition[J]. Mater Des,2019,177:107831. doi: 10.1016/j.matdes.2019.107831
    [59] ZHANG J K, YU Z B, GAO Z, GE H B, ZHAO S C, CHEN C Q, CHEN S, TONG X L, WANG M H, ZHENG Z F, QIN Y. Porous TiO2 Nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production[J]. Angew Chem,2017,129(3):816−820.
    [60] XU T T, SUN K, GAO D W, LI C C, HU X, CHEN G Z. Atomic-layer-deposition-formed sacrificial template for the construction of an MIL-53 shell to increase selectivity of hydrogenation reactions[J]. Chem Commun,2019,55(53):7651−7654. doi: 10.1039/C9CC02727K
    [61] GE H B, ZHANG B, GU X M, LIANG H J, YANG H M, GAO Z, WANG J G, QIN Y. A tandem catalyst with multiple metal oxide interfaces produced by atomic layer deposition[J]. Angew Chem,2016,55(25):7081−7085. doi: 10.1002/anie.201600799
    [62] LIU M, LI X L, KARUTURI S K, TOK A L Y, FAN H J. Atomic layer deposition for nanofabrication and interface engineering[J]. Nanoscale,2012,4(5):1522−1528. doi: 10.1039/c2nr11875k
    [63] HU Q, CAO K, LANG Y, CHEN R, CHU S Q, JIA L W, YUE J, SHAN B. Improved NO–CO reactivity of highly dispersed Pt particles on CeO2 nanorod catalysts prepared by atomic layer deposition[J]. Catal Sci Technol,2019,9(10):2664−2672. doi: 10.1039/C9CY00212J
    [64] WANG G H, LUO F, CAO K, ZHANG Y H, LI J L, ZHAO F Z, CHEN R, HONG J P. Effect of Ni content of Ni/γ-Al2O3 catalysts prepared by the atomic layer deposition method on CO2 reforming of methane[J]. Energy Technol,2019,7(5):1−9.
    [65] LU J L, FU B S, KUNG M C, XIAO G M, ELAM J W, KUNG H H, STAIR P C. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition[J]. Science,2012,335:1205−1208. doi: 10.1126/science.1212906
    [66] LITTLEWOOD P, LIU S, WEITZ E, MARKS T J, STAIR P C. Ni-alumina dry reforming catalysts: atomic layer deposition and the issue of Ni aluminate[J]. Catal Today,2020,343:18−25. doi: 10.1016/j.cattod.2019.03.040
    [67] HSU I J, KIMMEL Y C, JIANG X Q, WILLIS B G, CHEN J G. Atomic layer deposition synthesis of platinum-tungsten carbide core-shell catalysts for the hydrogen evolution reaction[J]. Chem Commun,2012,48(7):1063−1065. doi: 10.1039/C1CC15812K
    [68] YOU J H, GUO Y Z. Atomic layer deposition of fcc-FePt nanoparticles on g-C3N4 for magnetically recyclable photocatalysts with enhanced photocatalytic performance[J]. Ceram Int,2019,45(2):2451−2456. doi: 10.1016/j.ceramint.2018.10.171
    [69] YANG J, FU W Z, CHEN C Q, CHEN W Y, HUANG W G, YANG R O, KONG Q Q, ZHANG B Y, ZHAO J X, CHEN C M, LUO J, YANG F, DUAN X Z, JIANG Z, QIN Y. Atomic design and fine-tuning of subnanometric Pt catalysts to tame hydrogen generation[J]. ACS Catal,2021,11(7):4146−4156. doi: 10.1021/acscatal.0c04614
    [70] YAN H, CHENG H, YI H, LIN Y, YAO T, WANG C L, LI J J, WEI S Q, LU J L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene[J]. J Am Chem Soc,2015,137(33):10484−10487. doi: 10.1021/jacs.5b06485
    [71] LU J L, STAIR P C. Low-temperature ABC-type atomic layer deposition: Synthesis of highly uniform ultrafine supported metal nanoparticles[J]. Angew Chem,2010,49(14):2547−2551. doi: 10.1002/anie.200907168
    [72] CHENG N, STAMBULA S, WANG D, BANIS M N, LIU J, RIESE A, XIAO B W, LI R Y, SHAM T K, LIU L M, BOTTON G, SUN X L. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nat Commun,2016,7:13638. doi: 10.1038/ncomms13638
    [73] YAN H, LIN Y, WU H, ZHANG W H, SUN Z H, CHENG H, LIU W, WANG C L, LI J J, HUANG X H, YAO T, YANG J L, WEI S Q, LU J L. Bottom-up precise synthesis of stable platinum dimers on graphene[J]. Nat Commun,2017,8(1):1−10. doi: 10.1038/s41467-016-0009-6
    [74] ZHANG L, SI R T, LIU H S, CHEN N, WANG Q, ADAIR K, WANG Z Q, CHEN J T, SONG Z X, LI J J, BANIS M N, LI R Y, SHAM T K, GU M, LIU L M, BOTTON G A, SUN X L. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction[J]. Nat Commun,2019,10(1):1−11. doi: 10.1038/s41467-018-07882-8
    [75] ADHIKARI S, SELVARAJ S, KIM D H. Construction of heterojunction photoelectrode via atomic layer deposition of Fe2O3 on Bi2WO6 for highly efficient photoelectrochemical sensing and degradation of tetracycline[J]. Appl Catal B: Environ,2019,244:11−24. doi: 10.1016/j.apcatb.2018.11.043
    [76] JEONG M G, KIM S Y, KIM D H, HAN S W, KIM I H, LEE M, HWANG Y K, KIM Y D. High-performing and durable MgO/Ni catalysts via atomic layer deposition for CO2 reforming of methane (CRM)[J]. Appl Catal A: Gen,2016,515:45−50. doi: 10.1016/j.apcata.2016.01.032
    [77] FENG J H, XIONG S, WANG Y. Atomic layer deposition of hybrid metal oxides on carbon nanotube membranes for photodegradation of dyes[J]. Compos Commun,2019,12:39−46. doi: 10.1016/j.coco.2018.12.007
    [78] LIN C, JANG J B, ZHANG L H, STACH E A, GORTE R J. Improved coking resistance of “intelligent” Ni catalysts prepared by atomic layer deposition[J]. ACS Catal,2018,8(8):7679−7687. doi: 10.1021/acscatal.8b01598
    [79] MERKI D, VRUBEL H, ROVELLI L, FIERRO S, HU X L. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution[J]. Chem Sci,2012,3(8):2515−2525. doi: 10.1039/c2sc20539d
    [80] KONG D S, CHA J J., WANG H T, LEE H R, YI C. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction[J]. Energy Environ Sci,2013,6(12):3553−3558. doi: 10.1039/c3ee42413h
    [81] STASZAK-JIRKOVSKÝ J, MALLIAKAS C D, LOPES P P, DANILOVIC N, KOTA S S, CHANG K C, GENORIO B, STRMCNIK D, STAMENKOVIC V R, KANATZIDIS M G. MARKOVIC N M. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction[J]. Nat Mater,2016,15(2):197−203. doi: 10.1038/nmat4481
    [82] KIM D, SONG J G, YANG H, LEE H, PARK J, KIM H. Textile-based high-performance hydrogen evolution of low-temperature atomic layer deposition of cobalt sulfide[J]. Nanoscale,2019,11(3):844−850. doi: 10.1039/C8NR08969H
    [83] HUANG Y Z, LIU L, LIU X L. Modulated electrochemical oxygen evolution catalyzed by MoS2 nanoflakes from atomic layer deposition (ALD)[J]. Nanotechnology,2018,30(9):095402.
    [84] MCNEARY W W, ZACCARINE S F, LAI A, LINICO A E, PYLYPENKO S, WEIMER A W. Improved durability and activity of Pt/C catalysts through atomic layer deposition of tungsten nitride and subsequent thermal treatment[J]. Appl Catal B: Environ,2019,254:587−593. doi: 10.1016/j.apcatb.2019.05.036
  • 加载中
图(14)
计量
  • 文章访问数:  604
  • HTML全文浏览量:  322
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 修回日期:  2021-07-01
  • 网络出版日期:  2021-08-16
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回