留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲烷无氧直接制备烯烃/芳烃研究进展(II)

黄鑫 焦熙 王晓波 赵宁

黄鑫, 焦熙, 王晓波, 赵宁. 甲烷无氧直接制备烯烃/芳烃研究进展(II)[J]. 燃料化学学报(中英文), 2022, 50(1): 44-53. doi: 10.19906/j.cnki.JFCT.2021073
引用本文: 黄鑫, 焦熙, 王晓波, 赵宁. 甲烷无氧直接制备烯烃/芳烃研究进展(II)[J]. 燃料化学学报(中英文), 2022, 50(1): 44-53. doi: 10.19906/j.cnki.JFCT.2021073
HUANG Xin, JIAO Xi, WANG Xiao-bo, ZHAO Ning. Research progress in the direct, nonoxidative conversion of methane to olefins/aromatics (II)[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 44-53. doi: 10.19906/j.cnki.JFCT.2021073
Citation: HUANG Xin, JIAO Xi, WANG Xiao-bo, ZHAO Ning. Research progress in the direct, nonoxidative conversion of methane to olefins/aromatics (II)[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 44-53. doi: 10.19906/j.cnki.JFCT.2021073

甲烷无氧直接制备烯烃/芳烃研究进展(II)

doi: 10.19906/j.cnki.JFCT.2021073
基金项目: 国家自然科学基金(21805300)资助
详细信息
    作者简介:

    黄鑫:huangxin11987@163.com

    通讯作者:

    Tel/Fax: 0351-3176882, E-mail: wxbtyut@163.com

  • 中图分类号: Q643;TQ519

Research progress in the direct, nonoxidative conversion of methane to olefins/aromatics (II)

Funds: The project was supported by the National Natural Science Foundation of China (21805300)
  • 摘要: 在“碳达峰、碳中和”的背景下,甲烷无氧直接制备烯烃/芳烃具有零二氧化碳排放、100%碳原子利用和富产氢等优势,是碳一化学和催化领域中一个热点研究课题。本综述基于作者在甲烷无氧直接制备烯烃/芳烃反应的研究工作,结合2018−2021年的相关文献,对目前甲烷无氧芳构化反应和甲烷无氧直接制备烯烃、芳烃和氢气反应的世界各国研究现状进行综合评述。重点讨论活性位确认、反应中间体、反应机理、催化剂性能及提升等工作。最后对甲烷无氧直接制备烯烃/芳烃的研究前景进行了展望。
  • FIG. 1236.  FIG. 1236.

    FIG. 1236.  FIG. 1236.

    图  1  MDA反应机理研究的时间线

    Figure  1  Time line of study on the reaction mechanism for the MDA reaction

  • [1] 周淑慧, 王军, 梁严. 碳中和背景下中国“十四五”天然气行业发展[J]. 天然气工业,2021,41(2):171−182. doi: 10.3787/j.issn.1000-0976.2021.02.02(

    ZHOU Shu-hui, WANG Jun, LIANG Yan. Development of China’s natural gas industry during the 14th Five-Year Plan in the background of carbon neutrality[J]. Nat Gas Ind,2021,41(2):171−182. doi: 10.3787/j.issn.1000-0976.2021.02.02(
    [2] 包信和. 纳米限域及能源分子的催化转化[J]. 科学通报,2018,63(14):1265−1274. doi: 10.1360/N972018-00441

    BAO Xin-he. Nano confinement and catalytic conversion of energy molecules[J]. Chin Sci Bull,2018,63(14):1265−1274. doi: 10.1360/N972018-00441
    [3] 黄鑫, 焦熙, 林明桂, 贾丽涛, 侯博, 李德宝. 甲烷无氧直接制备芳烃研究进展[J]. 燃料化学学报,2018,46(9):1087−1100. doi: 10.3969/j.issn.0253-2409.2018.09.008

    HUANG Xin, JIAO Xi, LIN Ming-gui, JIA Li-tao, HOU Bo, LI De-bao. Research progress in the direct nonoxidative dehydroaromatization of methane to aromatics[J]. J Fuel Chem Technol,2018,46(9):1087−1100. doi: 10.3969/j.issn.0253-2409.2018.09.008
    [4] UPHAM C, AGARWAL V, KHECHFE A, SNODGRASS Z R, GORDON M J, METIU H, MCFARLAND E W. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon[J]. Science,2017,358:917−921. doi: 10.1126/science.aao5023
    [5] DÍZA-URRUTIA C, OTT T. Activation of methane to CH3+: A selective industrial route to methanesulfonic acid[J]. Science,2019,363:1326−1329. doi: 10.1126/science.aav0177
    [6] SONG Y, OZDEMIR E, RAMESH S, ADISHEV A, SUBRAMANIAN S, HARALE A, ALBUALI M, FADHEL B A, JAMAL A, MOON D, CHOI S, YAVUZ C. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO[J]. Science,2020,367:777−781. doi: 10.1126/science.aav2412
    [7] JIN Z, WANG L, ZUIDEMA E, MONDAL K, ZHANG M, ZHANG J, WANG C, MENG X, YANG H, MESTERS C, XIAO F. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol[J]. Science,2020,367:193−197. doi: 10.1126/science.aaw1108
    [8] WANG L, TAO L, XIE M, XU G, HUANG J, XU Y. Dehydrogenation and aromatization of methane under non-oxidizing conditions[J]. Catal Lett,1993,21:35−41. doi: 10.1007/BF00767368
    [9] GUO X, FANG G, LI G, MA H, FAN H, YU L, MA C, WU X, DENG D, WEI M, TAN D, SI R, ZHANG S, LI J, SUN L, TANG Z, PAN X, BAO X. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen[J]. Science,2014,344:616−619. doi: 10.1126/science.1253150
    [10] VOLLMER I, YARULINA I, KAPTEIJN F, GASCON J. Progress in developing a structure-activity relationship for the direct aromatization of methane[J]. ChemCatChem,2019,11:39−52. doi: 10.1002/cctc.201800880
    [11] SCHWACH P, PAN X, BAO X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects[J]. Chem Rev,2017,117:8497−8520. doi: 10.1021/acs.chemrev.6b00715
    [12] KOSINOV N, HENSEN E. Reactivity, selectivity, and stability of zeolite-based catalysts for methane dehydroaromatization[J]. Adv Mater,2020,2002565.
    [13] XU Y, BAO X, LIN L. Direct conversion of methane under nonoxidative conditions[J]. J Catal,2003,216:386−395. doi: 10.1016/S0021-9517(02)00124-0
    [14] MA S, GUO X, ZHAO L, SCOTT S, BAO X. Recent progress in methane dehydroaromatization: from laboratory curiosities to promising technology[J]. J Energy Chem,2013,22:1−20. doi: 10.1016/S2095-4956(13)60001-7
    [15] ISMAGILOV Z, MATUS E, TSIKOZA L. Direct conversion of methane on Mo/ZSM-5 catalysts to produce benzene and hydrogen: achievements and perspectives[J]. Energy Environ Sci,2008,1:526−541. doi: 10.1039/b810981h
    [16] SPIVEY J, HUTCHINGS G. Catalytic aromatization of methane[J]. Chem Soc Rev,2014,43:792−803. doi: 10.1039/C3CS60259A
    [17] KIANI D, SOURAV S, TANG Y, BALTRUSAITIS J, WACHS I. Methane activation by ZSM-5-supported transition metal centers[J]. Chem Soc Rev,2021,50:1251−1268. doi: 10.1039/D0CS01016B
    [18] MENON U, RAHMAN M, KHATIB S. A critical literature review of the advances in methane dehydroaromatization over multifunctional metal-promoted zeolite catalysts[J]. Appl Catal A: Gen,2020,608:117870. doi: 10.1016/j.apcata.2020.117870
    [19] XU Y, YUAN X, CHEM M, DONG A, LIU B, JIANG F, YANG S, LIU X. Identification of atomically dispersed Fe-oxo species as new active sites in HZSM-5 for efficient nonoxidative methane dehydroaromatization[J]. J Catal,2021,396:224−241. doi: 10.1016/j.jcat.2021.02.028
    [20] XU Y, CHEM M, WANG T, LIU B, JIANG F, LIU X. Probing cobalt localization of HZSM-5 for efficient methane dehydroaromatization catalysts[J]. J Catal,2020,387:102−118. doi: 10.1016/j.jcat.2020.04.021
    [21] XU Y, CHEM M, LIU B, JIANG F, LIU X. CH4 conversion over Ni/HZSM-5 catalyst in the absence of oxygen: decomposition or dehydroaromatization[J]. Chem Commun,2020,56:4396−4399. doi: 10.1039/D0CC01345E
    [22] THAKUR R, HOFFMAN M, VAHIDMOHAMMAD A, SMITH J, CHI M, TATARCHUK B, BEIDAGHI M, CARRERO C. Multilayered two-dimensional V2CTx MXene for methane dehydroaromatization[J]. ChemCatChem,2020,12:3639−3643. doi: 10.1002/cctc.201902366
    [23] DUTTA K, LI L, GUPTA P, GURIERREZ D, KOPYSCINSKI J. Direct non-oxidative methane aromatization over gallium nitride catalyst in a continuous flow reactor[J]. Catal Commun,2018,108:16−19.
    [24] KANITKAR S, ABEDIN M, BHATTAR S, SPIVEY J. Methane dehydroaromatization over molybdenum supported on sulfated zirconia catalysts[J]. Appl Catal A: Gen,2019,575:25−37. doi: 10.1016/j.apcata.2019.01.013
    [25] LEZCAO-GONZÁLEZ I, OORD R, ROVEZZI M, GLATZEL P, BOTCHWAY S, WECKHUYSEN B, BEALE A. Molybdenum speciation and its impact on catalytic activity during methane dehydroaromatization in zeolite ZSM-5 as revealed by operando X-ray methods[J]. Angew Chem Int Ed,2016,55:5215−5219. doi: 10.1002/anie.201601357
    [26] AGOTE-ARÁN M, KRONER A, ISLAM H, SŁAWIŃSKI W, WRAGG D, LEZCAO-GONZÁLEZ I, BEALE A. Determination of molybdenum species evolution during non-oxidative dehydroaromatization of methane and its implications for catalytic performance[J]. ChemCatChem,2019,11:473−480. doi: 10.1002/cctc.201801299
    [27] AGOTE-ARÁN M, FLETCHER R, BRICENO M, KRONER A, SAZANOVICH I, SLATER B, RIVAS M, SMITH A, COLLIER P, LEZCAO-GONZÁLEZ I, BEALE A. Implications of the molybdenum coordination environment in MFI zeolites on methane dehydroaromatization performance[J]. ChemCatChem,2020,12:294−304. doi: 10.1002/cctc.201901166
    [28] AGOTE-ARÁN M, KRONER A, WRAGG D, SŁAWIŃSKI W, BRICENO M, ISLAM H, SAZANOVICH I, RIVAS M, SMITH A, COLLIER P, LEZCAO-GONZÁLEZ I, BEALE A. Understanding the deactivation phenomena of small-pore Mo/H-SSZ-13 during methane dehydroaromatization[J]. Molecules,2020,25:5048. doi: 10.3390/molecules25215048
    [29] KOSINOV N, WIJPKEMA A, USLAMIN E, ROHLING R, COUMANS F, MEZARI B, PARASTAEV A, PORYVAEV A, FEDIN M, PIDKO E, HENSEN E. Confined carbon mediating dehydroaromatization of methane over Mo/ZSM-5[J]. Angew Chem Int Ed,2018,57:1016−1020. doi: 10.1002/anie.201711098
    [30] VOLLMER I, KOSINOV N, SZÉCSÉNYI Á, LI G, YARULINA I, ABOU-HAMAD E, GURINOV A, OULD-CHIKH S, AGUILAR-TAPIA A, HAZEMANN J, PIDKO E, HENSEN E, KAPTEIJN F, GASCON J. A site-sensitive quasi-in situ strategy to characterize Mo/HZSM-5 during activation[J]. J Catal,2019,370:321−331. doi: 10.1016/j.jcat.2019.01.013
    [31] LIU L, WANG N, ZHU C, LIU X, ZHU Y, GUO P, ALFILFIL L, DONG X, ZHANG D, HAN Y. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5[J]. Angew Chem Int Ed,2020,132:829−835. doi: 10.1002/ange.201909834
    [32] KONNOV S, DUBRAY F, CLATWORTHY E, KOUVATAS C, GILSON J, DATH J, MINOUX D, AQUINO C, VALTCHEV V, MOLDOVAN S, KONETI S, NESTERENKO N, MINTOVA S. Novel strategy for the synthesis of ultra-stable single-site Mo-ZSM-5 zeolite nanocrystals[J]. Angew Chem Int Ed,2020,59:19553−19560. doi: 10.1002/anie.202006524
    [33] WANG D, LUNSFORD J, ROSYNEK M. Catalytic conversion of methane to benzene over Mo/ZSM-5[J]. Top Catal,1996,3:289−297. doi: 10.1007/BF02113855
    [34] VOLLMER I, ABOU-HAMAD E, GASCON J, KAPTEIJN F. Aromatization of ethylene-main intermediate for MDA[J]. ChemCatChem,2020,12:544−549. doi: 10.1002/cctc.201901655
    [35] MÉRIAUDEAU P, TIEP L, HA V, NACCACHE C, SZABO G. Aromatization of methane over Mo/H-ZSM-5 catalyst: on the possible reaction intermediates[J]. J Mol Catal A: Chem,1999,144:469−471. doi: 10.1016/S1381-1169(99)00050-3
    [36] MÉRIAUDEAU P, HA V, TIEP L. Methane aromatization over Mo/H-ZSM-5: on the reaction pathway[J]. Catal Lett,2000,64:49−51. doi: 10.1023/A:1019014431678
    [37] HA V, TIEP L, MÉRIAUDEAU P, NACCACHE C. Aromatization of methane over zeolite supported molybdenum: active sites and reaction mechanism[J]. J Mol Catal A: Chem,2002,181:283−290. doi: 10.1016/S1381-1169(01)00373-9
    [38] RAZDAN N, KUMAR A, FOLEY B, BHAN A. Influence of ethylene and acetylene on the rate and reversibility of methane dehydroaromatization on Mo/H-ZSM-5 catalysts[J]. J Catal,2020,381:261−270. doi: 10.1016/j.jcat.2019.11.004
    [39] CHEN L, LIN L, XU Z, LI X, ZHANG T. Dehydro-oligomerization of methane to ethylene and aromatics over molybdenum/HZSM-5 catalyst[J]. J Catal,1995,157:190−200. doi: 10.1006/jcat.1995.1279
    [40] XU Y, LIU S, WANG L, XIE M, GUO X. Methane activation without using oxidants over Mo/HZSM-5 zeolite catalysts[J]. Catal Lett,1995,30:135−149. doi: 10.1007/BF00813680
    [41] LIU S, WANG L, OHNISHI R, ICHIKAWA M. Bifunctional catalysis of Mo/HZSM-5 in the dehydroaromatization of methane to benzene and naphthalene XAFS/TG/DTA/MASS/FTIR characterization and supporting effects[J]. J Catal,1999,181:175−188. doi: 10.1006/jcat.1998.2310
    [42] SHU J, ADNOT A, GRANDJEAN B. Bifunctional behavior of Mo/HZSM-5 catalysts in methane aromatization[J]. Ind Eng Chem Res,1999,38:3860−3867. doi: 10.1021/ie990145i
    [43] LIU S, WANG L, OHNISHI R, ICHIKAWA M. Bifunctional catalysis of Mo/HZSM-5 in the dehydroaromatization of methane with CO/CO2 to benzene and naphthalene[J]. Kinet Catal,2000,41:132−144. doi: 10.1007/BF02756152
    [44] MA D, SHU Y, CHENG M, XU Y, BAO X. On the induction period of methane aromatization over Mo-based catalysts[J]. J Catal,2000,194:105−114. doi: 10.1006/jcat.2000.2908
    [45] DING W, LI S, MEITZNER G, IGLESIA E. Methane conversion to aromatics on Mo/HZSM-5: Structure of molybdenum species in working catalysts[J]. J Phys Chem B,2001,105:605−513.
    [46] DING W, MEITZNER G, MARLER D, IGLESIA E. Synthesis, structural characterization, and catalytic properties of tungsten-exchanged H-ZSM5[J]. J Phys Chem B,2001,105:3928−3936. doi: 10.1021/jp003413v
    [47] DING W, MEITZNER G, IGLESIA E. The effects of silanation of external acid sites on the structure and catalytic behavior of Mo/H-ZSM5[J]. J Catal,2002,206:14−22. doi: 10.1006/jcat.2001.3457
    [48] KOSINOV N, COUMANS F, USLAMIN E, WIJPKEMA S, MEZARI B, HENSEN E. Methane dehydroaromatization by Mo/HZSM-5: Mono- or bifunctional catalysis[J]. ACS Catal,2017,7:520−529. doi: 10.1021/acscatal.6b02497
    [49] KOSINOV N, USLAMIN E, COUMANS J, WIJPKEMA A, ROHLING R, HENSEN E. Structure and evolution of confined carbon species during methane dehydroaromatization over Mo/ZSM-5[J]. ACS Catal,2018,8:8459−8467. doi: 10.1021/acscatal.8b02491
    [50] VOLLMER I, LINDEN B, OULD-CHIKH S, AGUILAR-TAPIA A, YARULINA I, ABOU-HAMAD E, SNEIDER Y, SUZREZ A, HAZEMANN J, KAPTEIJN F, GASCON J. On the dynamic nature of Mo sites for methane dehydroaromatization[J]. Chem Sci,2018,9:4801−4807. doi: 10.1039/C8SC01263F
    [51] CAGLAYAN M, PAIONI A, ABOU-HAMAD E, SHTERK G, PUSTOVARENKO A, BALDUS M, CHOWDHURY A, GASCON J. Initial carbon-carbon bond formation during the early stages of methane dehydroaromatization[J]. Angew Chem Int Ed,2020,59:16741−16746. doi: 10.1002/anie.202007283
    [52] GAO W, QI G, WANG Q, WANG W, LI S, HUNG I, GAO Z, XU J, DENG F. Dual active sites on molybdenum/ZSM-5 catalyst for methane dehydroaromatization: Insight from solid-state NMR spectroscopy[J]. Angew Chem Int Ed,2021,60:10709−10715. doi: 10.1002/anie.202017074
    [53] WANG K, HUANG X, LI D. Hollow ZSM-5 zeolite grass ball catalyst in methane dehydroaromatization: one-step synthesis and the exceptional catalytic performance[J]. Appl Catal A: Gen,2018,556:10−19. doi: 10.1016/j.apcata.2018.02.030
    [54] HUANG X, JIAO X, LIN M, WANG K, JIA L, HOU B, LI D. Coke distribution determines the lifespan of a hollow Mo/HZSM-5 capsule catalyst in CH4 dehydroaromatization[J]. Catal Sci Technol,2018,8:5740−5749. doi: 10.1039/C8CY01391H
    [55] JIAO X, HUANG X, WANG K. In situ UV-Raman spectroscopy of the coking-caused deactivation mechanism over an Mo/HMCM-22 catalyst in methane dehydroaromatization[J]. Catal Sci Technol,2019,9:6552−6555. doi: 10.1039/C9CY01932D
    [56] VOLLMER I, LI G, YARULINA I, KOSINOV N, HENSEN E, HOUBEN K, MANCE D, BALDUS M, GASCON J, KAPTEIJN F. Relevance of the Mo-precursor state in H-ZSM-5 for methane dehydroaromatization[J]. Catal Sci Technol,2018,8:916−922. doi: 10.1039/C7CY01789H
    [57] KOSINOV N, USLAMIN E, MENG L, PARASTAEV A, LIU Y, HENSEN E. Reversible nature of coke formation on Mo/ZSM-5 methane dehydroaromatization catalysts[J]. Angew Chem Int Ed,2019,131:7142−7146. doi: 10.1002/ange.201902730
    [58] JULIAN I, ROEDERN M, HUESO J, IRUSTA S, BADEN A, MALLADA R, DAVIS Z, SANTAMARIA J. Supercritical solvothermal synthesis under reducing conditions to increase stability and durability of Mo/ZSM-5 catalysts in methane dehydroaromatization[J]. Appl Catal B: Environ,2020,263:118360. doi: 10.1016/j.apcatb.2019.118360
    [59] BALYAN S, HAIDER M, KHAN T, PANT K. Boric acid treated HZSM-5 for improved catalyst activity in non-oxidative methane dehydroaromatization[J]. Catal Sci Technol,2020,10:3857−3867. doi: 10.1039/D0CY00286K
    [60] GU Y, CHEN P, YAN H, WANG X, LYU Y, TIAN Y, LIU W, YAN Z, LIU X. Coking mechanism of Mo/ZSM-5 catalyst in methane dehydroaromatization[J]. Appl Catal A: Gen,2021,613:118019. doi: 10.1016/j.apcata.2021.118019
    [61] ZHANG Y, JIANG H. A novel route to improve methane aromatization by using a simple composite catalyst[J]. Chem Commun,2018,54:10343−10346. doi: 10.1039/C8CC05059G
    [62] KUMAR A, SONG K, LIU L, HAN Y, BHAN A. Absorptive hydrogen scavenging for enhanced aromatics yield during non-oxidative methane dehydroaromatization on Mo/H-ZSM-5 catalysts[J]. Angew Chem Int Ed,2018,57:15577−15582. doi: 10.1002/anie.201809433
    [63] SIM J, LEE B, HAN G, KIM D, LEE K. Promotional effect of Au on Fe/HZSM-5 catalyst for methane dehydroaromatization[J]. Fuel,2020,274:117852. doi: 10.1016/j.fuel.2020.117852
    [64] HAN S, LEE S, KIM H, KIM S, KIM Y. Nonoxidative direct conversion of methane on silica-based iron catalysts: Effect of catalytic surface[J]. ACS Catal,2019,9:7984−7997. doi: 10.1021/acscatal.9b01643
    [65] SOT P, NEWTON M, BAABE D, MALTER M, BAVEL A, HORTON A, COPERET C, BOKHOVEN J. Non-oxidative methane coupling over silica versus silica-supported iron(II) single sites[J]. Chem A Euro J,2020,26:8012−8016. doi: 10.1002/chem.202001139
    [66] EGGART D, ZIMINA A, CAVUSOGLU G, CASAPU M, DORONKIN D, LOMACHENKO K, GRUNWALDT J. Versatile and high temperature spectroscopic cell for operando fluorescence and transmission X-ray absorption spectroscopy studies of heterogeneous catalysts[J]. Rev Sci Instrum,2021,92:023106. doi: 10.1063/5.0038428
    [67] XIE P, PU T, NIE A, HWANG S, PURDY S, YU W, SU D, MILLER J, WANG C. Nanoceria-supported single-atom platinum catalysts for direct methane conversion[J]. ACS Catal,2018,8:4044−4048. doi: 10.1021/acscatal.8b00004
    [68] XIAO Y, VARMA A. Highly selective nonoxidative coupling of methane over Pt-Bi bimetallic catalysts[J] ACS Catal, 2018, 8: 2735−2740.
    [69] DIPU A, OHBUCHI S, NISHIKAWA Y, IGUCHI S, OGIHARA H, YAMANAKA I. Direct nonoxidative conversion of methane to higher hydrocarbons over silica-supported nickel phosphide catalyst[J] ACS Catal, 2020, 10: 375−379.
    [70] HAO J, SCHWACH P, LI L, GUO X, WENG J, ZHANG H, SHEN H, FANG G, HUANG X, PAN X, XIAO C, YANG X, BAO X. Direct experimental detection of hydrogen radicals in non-oxidative methane catalytic reaction[J]. J Energy Chem,2021,52:372−376. doi: 10.1016/j.jechem.2020.04.001
    [71] LIU Y, LIU J, LI T, DUAN Z, ZHANG T, YAN M, LI W, XIAO H, WANG Y, CHANG C, LI J. Unravelling the enigma of nonoxidative conversion of methane on iron single-atom catalysts[J]. Angew Chem Int Ed,2020,59:18586−18590. doi: 10.1002/anie.202003908
    [72] HAO J, SCHWACH P, FANG G, GUO X, ZHANG H, SHEN H, HUANG X, EGGART D, PAN X, BAO X. Enhanced methane conversion to olefins and aromatics by H-donor molecules under nonoxidative condition[J]. ACS Catal,2019,9:9045−9050. doi: 10.1021/acscatal.9b01771
    [73] SAKBODIN M, WU Q, OH S, WACHSMAN E, LIU D. Hydeogen-permeable tubular membrane reactor: promoting conversion and product selectivity for non-oxidative activation of methane over an Fe©SiO2 catalyst[J]. Angew Chem Int Ed,2016,55:16149−16152. doi: 10.1002/anie.201609991
    [74] OH S, SCHULAMAN E, ZHANG J, FAN J, PAN Y, MENG J, LIU D. Direct non-oxidative methane conversion in a millisecond catalytic wall reactor[J]. Angew Chem Int Ed,2019,58:7083−7086. doi: 10.1002/anie.201903000
    [75] KIM H, LEE S, NA G, HAN S, KIM S, SHIN J, CHANG H, KIM Y. Reaction condition optimization for non-oxidative conversion of methane using artificial intelligence[J]. React Chem Eng,2021,6:235−243. doi: 10.1039/D0RE00378F
    [76] POSTMA R, LEFFERTS L. Influence of axial temperature profiles on Fe/SiO2 catalyzed non-oxidative coupling of methane[J]. ChemCatChem,2021,13:1157−1160. doi: 10.1002/cctc.202001785
    [77] ZHANG X, YOU R, WEI Z, JIANG X, YANG J, PAN Y, WU P, JIA Q, BAO Z, BAI L, JIN M, SUMPTER B, FUNG V, HUANG W, WU Z. Radical chemistry and reaction mechanisms of propane oxidative dehydrogenation over hexagonal boron nitride catalysts[J]. Angew Chem Int Ed,2020,59:8042−8046. doi: 10.1002/anie.202002440
    [78] 孙杨, 丁豆豆, 林昌, 刘向林, 张超, 田鹏飞, 曹晨熙, 杨子旭, 徐晶, 韩一帆. 动态现场原位(operando)表征技术在多相催化反应中的应用与进展[J]. 化工进展,2019,38(1):260−277.

    SUN Yang, DING Dou-dou, LIN Chang, LIU Xiang-lin, ZHANG Chao, TIAN Peng-fei, CAO Chen-xi, YANG Zi-xu, XU Jin, HAN Yi-fan. Advances in operando techniques for the heterogeneous catalytic reactions[J]. Chem Ind Eng Prog,2019,38(1):260−277.
  • 加载中
图(2)
计量
  • 文章访问数:  712
  • HTML全文浏览量:  224
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-11
  • 修回日期:  2021-07-16
  • 网络出版日期:  2021-08-10
  • 刊出日期:  2022-01-25

目录

    /

    返回文章
    返回