留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲烷催化燃烧反应机理及催化剂研究进展

楚培齐 王赛飞 赵世广 张依 邓积光 刘雨溪 郭萌 段二红

楚培齐, 王赛飞, 赵世广, 张依, 邓积光, 刘雨溪, 郭萌, 段二红. 甲烷催化燃烧反应机理及催化剂研究进展[J]. 燃料化学学报(中英文), 2022, 50(2): 180-194. doi: 10.19906/j.cnki.JFCT.2021077
引用本文: 楚培齐, 王赛飞, 赵世广, 张依, 邓积光, 刘雨溪, 郭萌, 段二红. 甲烷催化燃烧反应机理及催化剂研究进展[J]. 燃料化学学报(中英文), 2022, 50(2): 180-194. doi: 10.19906/j.cnki.JFCT.2021077
CHU Pei-qi, WANG Sai-fei, ZHAO Shi-guang, ZHANG Yi, DENG Ji-guang, LIU Yu-xi, GUO Meng, DUAN Er-hong. Research progress of reaction mechanism and catalysts on catalytic methane combustion[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 180-194. doi: 10.19906/j.cnki.JFCT.2021077
Citation: CHU Pei-qi, WANG Sai-fei, ZHAO Shi-guang, ZHANG Yi, DENG Ji-guang, LIU Yu-xi, GUO Meng, DUAN Er-hong. Research progress of reaction mechanism and catalysts on catalytic methane combustion[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 180-194. doi: 10.19906/j.cnki.JFCT.2021077

甲烷催化燃烧反应机理及催化剂研究进展

doi: 10.19906/j.cnki.JFCT.2021077
基金项目: 国家自然科学基金(U20A20130),河北省高等学校科学技术研究项目(QN2021059),河北省重点研发计划-资源与环境专项(20373703D)和河北科技大学人才研究基金(1181400)资助
详细信息
    作者简介:

    楚培齐:chupeiqivip@163.com

    通讯作者:

    E-mail:wang_saifei@163.com

    duan_eh@163.com

  • 中图分类号: TQ426, X701

Research progress of reaction mechanism and catalysts on catalytic methane combustion

Funds: The project was supported by the National Natural Science Foundation of China (U20A20130), Hebei Education Department (QN2021059), Hebei provincial Department of Science and Technology (20373703D) and Introduction of Talent Research Fund project of Hebei University of Science and Technology (1181400)
  • 摘要: 在煤矿开采及燃气轮机等工业应用或移动源领域存在甲烷大体量排放,且传统高温焚烧法会导致二次污染,因此,在低温下实现甲烷高效转化成为亟待解决的问题。从能源利用和环境保护角度,催化燃烧技术是实现甲烷废气高效净化的有效措施。本文综述了近年来催化机理和催化剂的研究进展。首先,在实验和理论基础上,总结概括了甲烷氧化机理,其中,重点阐述了“Two-term”模型;其次,系统介绍了各催化剂的性能优缺点和改性技术;最后,对甲烷催化未来研究提出展望,即采用结构优化方法来暴露更多活性位点或产生多组分协同催化效果、利用非贵金属掺杂等强化手段制备高效催化剂、进一步通过多重外场共同激发催化性能。此外,各类催化机理的自身完善和新型机理描述符的开发也是未来研究的重要方向。
  • FIG. 1264.  FIG. 1264.

    FIG. 1264.  FIG. 1264.

    图  1  催化氧化反应速率曲线

    Figure  1  Catalytic oxidation reaction rate curve

    图  2  (a) LaFexCo1−xO3中B位阳离子d带中心及Op带中心的相对费米能级值; (b) LaFexCo1−xO3催化氧化CH4活性对比图[22]

    Figure  2  (a) Value of B-site metal cation d-band center and O p-band center to the Fermi lever in LaFexCo1−xO3; (b) Comparison of the activity of LaFexCo1−xO3 for the catalytic oxidation of CH4[22]

    (with permission from Elsevier)

    图  3  (a) Pt/CeO2的甲烷转化率随时间变化曲线(SO2存在情况)[48]; (b) La-Co基钙钛矿氧化物催化剂表面E-R机理图和表面内MVK机理图[49]

    Figure  3  (a) CH4 conversion curve with time for Pt/CeO2 (in the presence of SO2)[48]; (b) Surface E-R mechanism diagram and intersurface MVK mechanism diagram of La-Co-based chalcogenide oxide catalyst[49]

    (with permission from Elsevier)

    图  4  尖晶石的三种结构类型:(a) 正尖晶石, (b)反尖晶石, (c)混合尖晶石[77]

    Figure  4  Three structural types of spinels: (a) ortho-spinel, (b) anti-spinel and (c) mixed spinel[77]

    图  5  MnCo2O4、NiCo2O4和CuCo2O4尖晶石催化CH4机制[78]

    Figure  5  Mechanism of CH4 catalysis by MnCo2O4, NiCo2O4 and CuCo2O4 spinels[78]

    (with permission from Elsevier)

    图  6  钙钛矿型氧化物结构及CH4催化氧化机理图[82]

    Figure  6  Structure of perovskite oxide and mechanism of CH4 catalytic oxidation[82]

    (with permission from Elsevier)

    图  7  钙钛矿催化剂的制备方法及改性工艺

    Figure  7  Preparation method and modification process of perovskite catalyst

    图  8  柠檬酸法-溶胶凝胶法(LaCoO3-SC)、乙二醇/甲醇-溶胶凝胶法(LaCoO3-SE)、模板法(LaCoO3)、共沉淀法(LaCoO3-P)制备的LaCoO3氧化活性[83]

    Figure  8  Oxidation activity of LaCoO3 prepared by Citric acid sol-gel method (LaCoO3-SC), Ethylene glycol/methanol-sol-gel method (LaCoO3-SE), template method (LaCoO3), and co-precipitation method (LaCoO3-P)[83]

    (with permission from Elsevier)

    图  9  胶体晶体模板法制备3DOM材料的工艺流程[85]

    Figure  9  Process flow of 3DOM material preparation by colloidal crystal template method[85]

    (with permission from Elsevier)

    图  10  LaNi0.5Co0.5O3和LaNi0.8Co0.2O3的结构变化图[88]

    Figure  10  Structural changes of LaNi0.5Co0.5O3 and LaNi0.8Co0.2O3[88]

    (with permission from Elsevier)

    表  1  催化剂催化燃烧CH4性能

    Table  1  Comparison of CH4 catalytic combustion performance of catalysts

    TypeCatalystConcentrationAir speed/
    (mL·h−1·g−1)
    Conversion temperature
    t90/℃
    References
    Supported Noble Metal0.3%Pd/AlOOH/Al-foam1000072000352[26]
    Co/Ce0.3Zr0.7O2-δ769233000500[27]
    0.5Pd/M-Co1Ni41000060000323[28]
    5.0% PdOx/CeO210000018000400[29]
    Single transition metalCeO2-MnOx1000030000540[30]
    Pd/CeO21000015000336[31]
    Pd/Co3O4 @ SiO2 1000030000450[32]
    HexaaluminateLaMg0.7 FeAl10.3O191000048000640[33]
    1.91AuPd1.80/3DOM LaMnAl11O192500020000402[34]
    PerovskiteCa2FeNiO61000050000640[35]
    LaMn0.2Fe0.8O31000050000550[36]
    BaCe0.6Mn0.4O3-δ1000020000423[37]
    LaNi0.2Co0.8O31000050000610[38]
    下载: 导出CSV
  • [1] CARAVAGGIO G, NOSSOVA L M, TURNBULL M J. Nickel-magnesium mixed oxide catalyst for low temperature methane oxidation[J]. Chem Eng J,2021,405:126862. doi: 10.1016/j.cej.2020.126862
    [2] KURNIA J C, XU P, SASMITO A P. A novel concept of enhanced gas recovery strategy from ventilation air methane in underground coal mines-a computational investigation[J]. J Nat Gas Sci Eng,2016,35:661−672. doi: 10.1016/j.jngse.2016.09.013
    [3] 刘桂凤, 皮希宇, 王栓林, 廉振山, 张志荣. 瓦斯抽采与利用技术的现状分析[J]. 煤炭与化工,2015,38(3):5−8.

    LIU Gui-feng, PI Xi-ning, WANG Shuan-lin, LIAN Zhen-shan, ZHANG Zhi-rong. Status analysis of gas extraction and utilization technology[J]. Coal Chem Ind,2015,38(3):5−8.
    [4] AHMAD Y H, MOHAMED A T, AL-QARADAWI S Y. Exploring halloysite nanotubes as catalyst support for methane combustion: Influence of support pretreatment[J]. Appl Clay Sci,2021,201:105956. doi: 10.1016/j.clay.2020.105956
    [5] 张兆瑞, 党文龙, 耿丽. 煤矿风排瓦斯燃烧用催化剂研究进展[J]. 陕西煤炭,2020,39(S1):127−133.

    ZHANG Zhao-rui, DANG Wen-long, GENG Li. Research progress of the catalysts for catalytic combustion of coal mine ventilation air methane[J]. Shaanxi Coal,2020,39(S1):127−133.
    [6] 苗飞飞, 毛东森, 郭晓明, 俞俊, 黄厚金. 甲烷催化燃烧催化剂的研究进展[J]. 应用技术学报,2019,19(3):242−248. doi: 10.3969/j.issn.2096-3424.2019.03.006

    MIAO Fei-fei, MAO Dong-sen, GUO Xiao-ming, YU Jun, HUNANG Hou-jin. Progress of precious metals catalysts for catalytic combustion of volatile organic compounds[J]. J Technol,2019,19(3):242−248. doi: 10.3969/j.issn.2096-3424.2019.03.006
    [7] PAN K L, PAN G T, CHONG S, CHANG M B. Removal of VOCs from gas streams with double perovskite-type catalysts[J]. J Environ Sci,2018,69:205−216. doi: 10.1016/j.jes.2017.10.012
    [8] 谢在库, 金中豪, 王仰东. 基于绿色氢科学理念构筑从低碳制氢到高效储氢的氢能体系[J]. 中国科学(化学),2013,43(1):1−9.

    XIE Zai-ku, JIN Zhong-hao, WANG Yang-dong. Design and construction of a hydrogen energy system covering low-carbon production and highly efficient storage based on the concept of green hydrogen science[J]. Sci China-Chem,2013,43(1):1−9.
    [9] WANG Z Y, MA K D, WANG J, PAN L W. Research progress of non-noble-metal catalysts for methane catalytic combustion[J]. China Biogas,2019,37(01):9−14.
    [10] 张洪雁, 杜双利, 王雪峰. 非贵金属氧化物甲烷催化燃烧催化剂的研究进展[J]. 天然气化工,2021,46(2):10−14+127.

    ZHANG Hong-yan, DU Shuang-li. WANG Xue-feng. Research progress of non-noble metal catalysts for methane catalytic combustion[J]. Na Gas Ind,2021,46(2):10−14+127.
    [11] CHEN J H, ARANDIYAN H, GAO X, LI J H. Recent advances in catalysts for methane combustion[J]. Catal Surv from Asia,2015,19(3):140−171. doi: 10.1007/s10563-015-9191-5
    [12] 陈明, 王新, 焦文玲, 王延连. 甲烷催化燃烧机理及催化剂研究进展[J]. 煤气与热力,2010,30(11):34−37. doi: 10.3969/j.issn.1000-4416.2010.11.010

    CHEN Ming, WANG Xin, JIAO Wen-ling, WANG Yan-lian. Research progress in mechanism and catalysts for methane catalytic combustion[J]. Gas Heat,2010,30(11):34−37. doi: 10.3969/j.issn.1000-4416.2010.11.010
    [13] LEE J H, TRIMM D L. Catalytic combustion of methane[J]. Fuel Process Technol,1995,42(2):339−359.
    [14] 韩维屏. 催化化学导论[M]. 北京: 中国科学技术出版社, 2003.

    HAN Wei-ping. Introduction to Catalytic Chemistry[M]. Beijing: China Science and Technology Press, 2003.
    [15] HE L, FAN Y, BELLETTRE J, YUE J, LUO L A. A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs[J]. Renewable Sustainable Energy Rev,2020,119:109589. doi: 10.1016/j.rser.2019.109589
    [16] DU J C, LI H, WANG C X, ZHANG A M, ZHAO Y K, LUO Y M. Improved catalytic activity over P-doped ceria-zirconia-alumina supported palladium catalysts for methane oxidation[J]. Catal Commun,2020,141:106012. doi: 10.1016/j.catcom.2020.106012
    [17] LEE J E, OK Y S, TSANG D C W, SONG J, JUNG S C, PARK Y K. Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes: A critical review[J]. Sci Total Environ,2020,719:137405. doi: 10.1016/j.scitotenv.2020.137405
    [18] ZASADA F, JANAS J, PISKORZ W, GORCZYNSKA M, SOJKA Z. Total oxidation of lean methane over cobalt spinel nanocubes con-trolled by the self-adjusted redox state of the catalyst: Experimental and theoretical account for interplay between the Langmuir-Hinshelwood and Mars-Van Krevelen mechanisms[J]. ACS Catal,2017,7:2853−2867. doi: 10.1021/acscatal.6b03139
    [19] SPECCHIA S, CONTI F, SPECCHIA V. Kinetic studies on Pd/CexZr1−xO2 catalyst for methane combustion[J]. Ind Eng Chem Res,2010,21:11101−11111.
    [20] NEUBERG S, PENNEMANN H, SHANMUGAM V, ZAPF R, KOLB G. Promoting effect of Rh on the activity and stability of Pt-based methane combustion catalyst in microreactors[J]. Catal Commun,2021,149:106202. doi: 10.1016/j.catcom.2020.106202
    [21] OH S H, MITCHELL P J, SIEWERT R M. Methane oxidation over alumina-supported noble metal catalysts with and without cerium additives[J]. J Catal,1991,132:287−301. doi: 10.1016/0021-9517(91)90149-X
    [22] WANG T, ZHANG C, WANG J, LI H, DUAN Y, LIU Z, LEE J Y, HU X, XI S, DU Y, SUN S, LIU X, LEE J M, WANG C, XU Z J. The interplay between the suprafacial and intrafacial mechanisms for complete methane oxidation on substituted LaCoO3 perovskite oxides[J]. J Catal,2020,390:1−11. doi: 10.1016/j.jcat.2020.07.007
    [23] WANG T, WANG J, SUN Y, DUAN Y, SUN S, HU X, XI S, DU Y, WANG C, XU Z J. Origin of electronic structure dependent activity of spinel ZnNixCo2-xO4 oxides for complete methane oxidation[J]. Appl Catal B: Environ,2019,256:117844. doi: 10.1016/j.apcatb.2019.117844
    [24] LI H, FENG F, DU J C, GUO M X, ZHANG A M. Research progress of Pd/Al2O3 catalysts for methane combustion[J]. Precious Metals,2020,41(02):66−74.
    [25] QIN Z F, HAN X, BAN H Y, SUN P C, LIU Y, LI C M, CHANG L P, XIE K C. Effect of preparation method on activity and sulfur resistance of nickel-based methanation catalysts[J]. J Taiyuan Univ Technol,2020,51(6):808−815.
    [26] ZHU C S, LI J F, ZHANG Q F. Monolithic Al-foam supported Pd catalyst Pd/AlOOH/Al-foam for catalytic combustion of methane[J]. Ind Catal,2021,29(01):28−37.
    [27] WANG B L, ZHANG J, ZHONG H X, WANG Z Y, WANG J, WANG H Z, LI D, PAN L W. Effect of Ce doping content on catalytic performance of supported Co/ZrO2 catalysts for combustion of methane[J]. Mod Chem Ind,2020,40(12):151−155.
    [28] LI C S, LI W Z, CHEN K, OGUNBIYI J T, ZHOU Z A, DUAN Q Y, XUE F Y. Highly active Pd catalysts supported on surface-modified cobalt-nickel mixed oxides for low temperature oxidation of lean methane[J]. Fuel,2020,279:118372. doi: 10.1016/j.fuel.2020.118372
    [29] WANG D, ZHU S Y, YAN X L, LI R F. Complete oxidation of methane on different metals (iron, cobalt, nickel, palladium) supported on CeO2[J]. Appl Chem Ind,2019,48(12):2867−2871.
    [30] 李树娜, 宋佩, 张金丽, 贺小霞, 解一昕, 张亚刚, 王瑞义, 李志凯, 朱华青. CeO2-MnOx催化剂形貌对低浓度甲烷催化燃烧反应性能的影响[J]. 燃料化学学报,2018,46(5):615−624. doi: 10.3969/j.issn.0253-2409.2018.05.015

    LI Shu-na, SONG Pei, ZHANG Jin-li, HE Xiao-xia, XIE Yi-xin, ZHANG Ya-gang, WANG Rui-yi, LI Zhi-kai, ZHU Hua-qing. Morphological effect of CeO2-MnOx catalyst on their catalytic performance in lean methane combustion[J]. J Fuel Chem Technol,2018,46(5):615−624. doi: 10.3969/j.issn.0253-2409.2018.05.015
    [31] MA J, LOU Y, CAI Y F, ZHAO Z Y, WANG L, ZHAN W C, GUO Y L, GUO Y. The relationship between chemical state of Pd species and catalytic activity of methane combustion on Pd/CeO2[J]. Catal Sci Technol,2018,8:2567−2577. doi: 10.1039/C8CY00208H
    [32] 卢楠, 吴志伟, 雷丽军, 秦张峰, 朱华青, 罗莉, 樊卫斌, 王建国. 核-壳结构Pd-Co3O4@SiO2催化剂的低浓度甲烷催化燃烧性能[J]. 燃料化学学报,2015,43(9):1120−1127. doi: 10.3969/j.issn.0253-2409.2015.09.015

    LU Nan, WU Zhi-wei, LEI Li-jun, QIN Zhang-feng, ZHU Hua-qing, LUO Li, FAN Wei-bin, WANG Jian-guo. Catalytic combustion of lean methane over a core-shell structured Pd-Co3O4@SiO2 catalyst[J]. J Fuel Chem Technol,2015,43(9):1120−1127. doi: 10.3969/j.issn.0253-2409.2015.09.015
    [33] HUANG F, WANG X D, LI L, LIU X, XU J M, HUANG C D, ZHANG T. Effect of magnesium substitution into Fe-based La-hexaaluminates on the activity for CH4 catalytic combustion[J]. Catal Sci Technol,2016,6(21):7860−7867. doi: 10.1039/C6CY01491G
    [34] LI X Y, LIU Y X, DENG J G, ZHANG Y, XIE S H, ZHAO X T, WANG Z W, GUO G S, DAI H X. 3DOM LaMnAl11O19-supported AuPd alloy nanoparticles: Highly active catalysts for methane combustion in a continuous-flow microreactor[J]. Catal Today,2018,308:71−80. doi: 10.1016/j.cattod.2017.07.024
    [35] 刘赛, 解亚琼, 金丽瑛, 马斌, 郑建东. 掺杂Ni制备Ca2FeCo1−xNixO6催化剂及其催化甲烷燃烧性能[J]. 工业催化,2019,27(2):35−38. doi: 10.3969/j.issn.1008-1143.2019.02.004

    LIU Sai, XIE Ya-qiong, JIN Li-ying, MA Bin, ZHENG Jian-dong. Preparation of Ni-doped Ca2FeNixCo1−xO6 and its catalytic properties for methane combustion[J]. Ind Catal,2019,27(2):35−38. doi: 10.3969/j.issn.1008-1143.2019.02.004
    [36] 周毛毛, 王璞, 吴倩, 徐壮, 郑建东. LaMnxFe(1−x)O3催化剂的制备及其对甲烷燃烧的催化性能[J]. 合成化学,2018,26(9):691−694+698.

    ZHOU Mao-mao, WANG Pu, WU Qian, XU Zhuang, ZHENG Jian-dong. Preparation of LaMnxFe1−xO3 and catalytic properties for methane combustion[J]. Chin J Synth Chem,2018,26(9):691−694+698.
    [37] TAN X H, HAN N, CHEN H B, SU L, ZHANG C, LI Y. Investigation of perovskite BaCe1−xMnxO3-δ for methane combustion[J]. Ceram. Int.,2021,47:8762−8768. doi: 10.1016/j.ceramint.2020.11.141
    [38] 解亚琼, 金丽瑛, 马斌, 王博远, 郭季, 郑建东. 镧钴镍复合氧化物催化剂的制备及催化甲烷燃烧活性研究[J]. 化学通报,2019,82(9):806−810.

    XIE Ya-qiong, JIN Li-ying, MA Bin, WANG Bo-yuan, GUO Ji, ZHENG Jian-dong. Preparation and catalytic activities of LaNi1−xCoxO3 catalysts for methane catalytic combustion[J]. Chem,2019,82(9):806−810.
    [39] CIUPARU D, LYUBOVSKY M R, AITMANl E, PFEFFERLE L D, DATYE A. Catalytic combustion of methane over palladium-based catalysts.[J]. Catal Rev Sci Eng,2002,44(4):593−649. doi: 10.1081/CR-120015482
    [40] PERSSON K, ERSSN A, JANSSON K, FIERRO J L G, JARAS S G. Influence of molar ratio on Pd-Pt catalysts for methane combustion[J]. Catalysis,2006,243:14−24. doi: 10.1016/j.jcat.2006.06.019
    [41] 刘雨溪, 邓积光, 谢少华, 王治伟, 戴洪兴. 有序多孔过渡金属氧化物及其负载贵金属催化剂对挥发性有机物氧化的催化性能[J]. 催化学报,2016,37(8):1193−1205. doi: 10.1016/S1872-2067(16)62457-9

    LIU Yu-xi, DENG Ji-guang, XIE Shao-hua, WANG Zhi-wei, DAI Hong-xing. Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts[J]. Chin J Catal,2016,37(8):1193−1205. doi: 10.1016/S1872-2067(16)62457-9
    [42] 林虹霞, 孙光辉, 武金模, 陆彭飞, 周帆, 刘小勇, 戴洪兴. 负载贵金属催化剂在挥发性有机物氧化反应中的应用[J]. 工业催化,2020,28(4):16−27. doi: 10.3969/j.issn.1008-1143.2020.04.002

    LIN Hong-xia, SUN Guang-hui, WU Jin-mo, LU Peng-fei, ZHOU Fan, LIU Xiao-yong, DAI Hong-xing. Application of loaded precious metal catalysts in the oxidation reaction of volatile organic compounds[J]. Ind Catal,2020,28(4):16−27. doi: 10.3969/j.issn.1008-1143.2020.04.002
    [43] TIDAHY H L, HOSSENI M, SIFFERT S, COUSIN R, LAMONIER J F, ABOUKAIS A, SU B L, GIRAUDON J M, LECLERCQ G. Nanostructured macro-mesoporous zirconia impregnated by noble metal for catalytic total oxidation of toluene[J]. Catal Today,2008,137(2-4):335−339. doi: 10.1016/j.cattod.2007.09.008
    [44] WU Z X, DENG J G, XIE S H, YANG H G, ZHAO X T, ZHANG K F, LIN H X, DAI H X, GUO G S. Mesoporous Cr2O3-supported Au-Pd nanoparticles: High-performance catalysts for the oxidation of toluene[J]. Microporous Mesoporous Mater,2016,224:311−322. doi: 10.1016/j.micromeso.2015.11.061
    [45] MATAM S K, NEWTON M A, WEIDENKAFF A, FERRI D. Time resolved operando spectroscopic study of the origin of phosphorus induced chemical aging of model three-way catalysts Pd/Al2O3[J]. Catal Today,2013,205:3−9. doi: 10.1016/j.cattod.2012.10.009
    [46] DING Y Q, JIA Y Y, JIANG M X, GUO Y, GUO Y L, GUO Y, WANG L, KE Q P, HA M N, DAI S, ZHAN W C. Superior catalytic activity of Pd-based catalysts upon tuning the structure of the ceria-zirconia support for methane combustion[J]. Chem Eng J,2021,416:129150. doi: 10.1016/j.cej.2021.129150
    [47] CARGNELLO M, JAEN J J D, GARRIDO J C H, BAKHMUTSKY K, MONTIN T, GAMEZ J J C, GORTEG RJ, FORNASIERO P. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3[J]. Science,2012,337:713−717. doi: 10.1126/science.1222887
    [48] KYLHAMMAR L, NARLSSO P A, SKOGLUNDH M. Sulfur promoted low-temperature oxidation of methane over ceria supported platinum catalysts[J]. J Catal,2011,284:50−59. doi: 10.1016/j.jcat.2011.08.018
    [49] CHEN J J, WU Y, HU W, QU P F, LIU X, YUAN R, ZHONG L, CHEN Y Q. Insights into the role of Pt on Pd catalyst stabilized by magnesia-alumina spinel on gama-alumina for lean methane combustion: Enhancement of hydrothermal stability[J]. Mol Catal,2020,496:111185. doi: 10.1016/j.mcat.2020.111185
    [50] BECK I E, BUKHTIYAROV V, PAKHARUKOV I Y, ZAIKOVSKY V, KRIVENTSOV V, PARMON V. Platinum nanoparticles on Al2O3: correlation between the particle size and activity in total methane oxidation[J]. J Catal,2009,268:60−67. doi: 10.1016/j.jcat.2009.09.001
    [51] MIAO S J, DENG Y Q. Au-Pt/Co3O4 catalyst for methane combustion[J]. Appl Catal B: Environ,2001,31:L1−L4. doi: 10.1016/S0926-3373(01)00122-9
    [52] WANG Y, HAMIDREZZA A, JASON S, MANDANA A, DAI H X, DENG J G, KONDOFRANCOIS A Z, ROSE A. High performance Au-Pd supported on 3D hybrid strontium-substituted lanthanum manganite perovskite catalyst for methane combustion[J]. ACS Catal,2016,6(10):6935−6947. doi: 10.1021/acscatal.6b01685
    [53] HAN Z, DAI L Y, LIU Y X, DENG J G, JING L, ZHANG Y X, ZHANG K F, ZHANG X, HOU Z Q, PEI W B, DAI H X. AuPd/Co3O4/3DOM MnCo2O4: Highly active catalysts for methane combustion[J]. Catal Today,2021,376:134−143. doi: 10.1016/j.cattod.2020.06.068
    [54] 李世杰, 黄慧娟, 文世涛, 马建锋, 刘杏娥. 负载型贵金属催化剂氧化分解甲醛的研究进展[J]. 材料导报,2020,34(S1):400−407.

    LI Shi-jie, HUANG Hui-juan, WEN Shi-tao, MA Jian-feng, LIU Xing-e. Research progress of supported noble metal catalysts in catalytic oxidation of formaldehyde[J]. Mater Rep,2020,34(S1):400−407.
    [55] 卢杰. 贵金属配合物催化氧化甲烷的研究进展[J]. 广州化工,2020,48(15):51−53+64. doi: 10.3969/j.issn.1001-9677.2020.15.018

    LU Jie. Research progress on catalytic oxidation of methane by precious metal complexes[J]. Guangzhou Chem Ind,2020,48(15):51−53+64. doi: 10.3969/j.issn.1001-9677.2020.15.018
    [56] 孟令泉, 陈欣, 徐祖伟, 赵海波. 火焰合成Cu基催化剂在甲烷催化燃烧中的烧结行为[J]. 燃烧科学与技术,2019,25(5):414−422.

    MENG Ling-quan, CHEN Xin, XU Zu-wei, ZHAO Hai-bo. Sintering behaviors of Cu-Based catalysts via flame spray pyrolysis in methane catalytic combustion[J]. J Combust Sci Technol,2019,25(5):414−422.
    [57] 梁成思, 王娜峰, 刘晨阳, 宗毅晨, 李水清, 姚强. 铜基廉价催化剂的火焰合成及甲烷催化特性研究[J]. 工程热物理学报,2017,38(4):881−884.

    LIANG Cheng-si, WANG Na-feng, LIU Chen-yang, ZONG Yi-chen, LI Shui-qing, YAO Qiang. Flame synthesis and methane catalytic characterization of copper-based inexpensive catalysts[J]. J Eng Thermophys,2017,38(4):881−884.
    [58] AGUILA G, GRACIA F, CORTES J, ARAYA P. Effect of copper species and the presence of reaction products on the activity of methane oxidation on supported CuO catalysts[J]. Appl Catal B: Environ,2008,77(3/4):325−338.
    [59] POPESCU I, TANCHOUX N, TICHIT D, MARCU I C. Total oxidation of methane over supported CuO: Influence of the MgxAlyO support[J]. Appl Catal A: Gen,2017,538:81−90. doi: 10.1016/j.apcata.2017.03.012
    [60] PARK P W, LEDFORD J S. The influence of surface structure on the catalytic activity of alumina supported copper oxide catalysts. Oxidation of carbon monoxide and methane[J]. Appl Catal B: Environ,1998,15(3/4):221−231. doi: 10.1016/S0926-3373(98)80008-8
    [61] 徐锋, 李凡, 田瑶瑶, 毕方强, 朱丽华. Cu负载量对CuO/γ-Al2O3催化低浓度甲烷燃烧性能的影响[J]. 应用化工,2018,47(9):1858−1861. doi: 10.3969/j.issn.1671-3206.2018.09.014

    XU Feng, LI Fan, TIAN Yao-yao, BI Fang-qiang, ZHU Li-hua. Effect of Cu loading on performance of CuO/γ-Al2O3 catalyst in combustion of low-concentration methane[J]. Appl Chem Ind,2018,47(9):1858−1861. doi: 10.3969/j.issn.1671-3206.2018.09.014
    [62] ZHENG Y, YU Y, ZHOU H, HUANG W, PU Z. Combustion of lean methane over Co3O4 catalysts prepared with different cobalt precursors[J]. RSC Adv,2020,10(8):4490−4498. doi: 10.1039/C9RA09544F
    [63] SARAH C P, ERIN M M, GREGORY A C, MARJORIE A L. Cobalt oxide surface chemistry: The interaction of CoO(100), Co3O4(110) and Co3O4(111) with oxygen and water[J]. J Mol Catal A: Chem,2008,281:49−58. doi: 10.1016/j.molcata.2007.08.023
    [64] 白玮, 李秀洁, 彭占录. Co掺杂对CuO/CeO2-Co3O4优先氧化CO催化性能的影响[J]. 石油与天然气化工,2021,50(2):48−52. doi: 10.3969/j.issn.1007-3426.2021.02.008

    BAI Wei, LI Xiu-jie, PENG Zhan-lu. Effect of Co doping on the catalytic performance of CuO/CeO2-Co3O4 for preferential oxidation of CO[J]. Chem Eng Oil Gas,2021,50(2):48−52. doi: 10.3969/j.issn.1007-3426.2021.02.008
    [65] CHEN Z P, WANG S, LIU W G, GAO X H, GAO D N, WANG M Z, WANG S D. Morphology-dependent performance of Co3O4 via facile and controllable synthesis for methane combustion[J]. Appl Catal A: Gen,2016,525:94−102. doi: 10.1016/j.apcata.2016.07.009
    [66] YU Q, LIU C X, LI X Y, WANG C, WANG X X, CAO H J, ZHAO M C, WU G L, SU W G, MA T T, ZHANG J, BAO H L, WANG J Q, DING B, HE M X, YAMAUCHI Y, ZHAO X S. N-doping activated defective Co3O4 as an efficient catalyst for low-temperature methane oxidation[J]. Appl Catal B: Environ,2020,269:118757. doi: 10.1016/j.apcatb.2020.118757
    [67] FENG Z J, DU C, CHEN Y J, LANG Y K, ZHAO Y K, CHO K, CHEN R, SHAN B. Improved durability of Co3O4 particles supported on SmMn2O5 for methane combustion[J]. Catal Sci Technol,2018,8(15):3785−3794. doi: 10.1039/C8CY00897C
    [68] APOSTOLOV A T, APOSTOLOV I N, WESSELINOWA J M. Co, Fe and Ni ion doped CeO2 nanoparticles for application in magnetic hyperthermia[J]. Phys E,2020,124:114364. doi: 10.1016/j.physe.2020.114364
    [69] SANCHEZ J J, LOPEZ H M, HERNANDEZ G J C, BLANCO G, CAUQUI M A, RODRIGUEZ I J M, PEREZ O J A, CALVINO J J, YESTE M P. An atomically efficient, highly stable and redox active Ce0.5Tb0.5Ox (3% mol)/MgO catalyst for total oxidation of methane[J]. J Mater Chem A,2019,7(15):8993−9003. doi: 10.1039/C8TA11672E
    [70] STOIAN M, ROGE V, LAZAR L, MAURER T, VEDRINE J C, MARCU I C, FECHETE I. Total oxidation of methane on oxide and mixed oxide ceria-containing catalysts[J]. Catalysis,2021,11(4):427.
    [71] SHAN W J, LUO M F, YING P L, SHEN W J, LI C. Reduction property and catalytic activity of Ce1−XNiXO2 mixed oxide catalysts for CH4 oxidation[J]. Appl Catal A: Gen,2003,246(1):1−9. doi: 10.1016/S0926-860X(02)00659-2
    [72] 朱燕燕, 岳宗洋, 边文, 刘瑞林, 马晓迅, 王晓东. 六铝酸盐结构及其在高温反应中的应用[J]. 化学进展,2018,30(12):1992−2002.

    ZHU Yan-yan, YUE Zong-yang, BIAN Wen, LIU Rui-lin, MA Xiao-xun, WANG Xiao-dong. The structure of hexaaluminate and application in high-temperature reaction[J]. Prog Chem,2018,30(12):1992−2002.
    [73] XU P, ZHANG X, ZHAO X T, YANG J, HOU Z Q, BAI L, CHANG H Q, LIU Y X, DENG J G, GUO G S, DAI H X, AU C T. Preparation, characterization, and catalytic performance of Pd Pt/3DOM LaMnAl11O19 for the combustion of methane[J]. Appl Catal A: Gen,2018,562:284−293. doi: 10.1016/j.apcata.2018.05.022
    [74] 张亚萍. 掺杂金属的六铝酸盐催化甲烷燃烧性能研究[J]. 精细石油化工进展,2016,17(6):43−45+50. doi: 10.3969/j.issn.1009-8348.2016.06.013

    ZHANG Ya-ping. Research on combustion performance of metal substituted hexaaluminate catalyzed methane[J]. Adv Fine Petrochem,2016,17(6):43−45+50. doi: 10.3969/j.issn.1009-8348.2016.06.013
    [75] YURANOV I, MOECKLI P, SUVOROVA E, BUFFAT P, KIWI-MINSKER L. Pd/SiO2 catalysts: synthesis of Pd nanoparticles with the controlled size in mesoporous silicas[J]. J Mol Catal A: Chem,2003,192(1/2):239−251. doi: 10.1016/S1381-1169(02)00441-7
    [76] MASATO M, KOICHI E, HIROMICHI A. Analytical electron microscope analysis of the formation of BaO·6Al2O3[J]. J Am Ceram Soc,1988,71:1142−1147. doi: 10.1111/j.1151-2916.1988.tb05806.x
    [77] 朱文娟, 高凤雨, 唐晓龙, 易红宏, 于庆君, 赵顺征. 尖晶石型催化剂的制备及在气态污染物净化中的应用综述[J]. 材料导报,2020,34(3):50−61.

    ZHU Wen-juan, GAO Feng-yu, TANG Xiao-long, YI Hong-hong, YU Qing-jun, ZHAO Shun-zheng. Spinel catalysts: Preparation technology and applications in catalytic purification of gaseous pollutants[J]. Mater Rep,2020,34(3):50−61.
    [78] MIHAI M A, CULITA D C, ATKINSON I, PAPA F, POPESCU I, MARCU I C. Unraveling mechanistic aspects of the total oxidation of methane over Mn, Ni and Cu spinel cobaltites via in situ electrical conductivity measurements[J]. Appl Catal A: Gen,2021,611:117901. doi: 10.1016/j.apcata.2020.117901
    [79] YANG X, GAO Q, ZHAO Z, GUO Y, GUO Y, WANG L, WANG Y, ZHAN W. Surface tuning of noble metal doped perovskite oxide by synergistic effect of thermal treatment and acid etching: A new path to high-performance catalysts for methane combustion[J]. Appl Catal B: Environ,2018,239:373−382. doi: 10.1016/j.apcatb.2018.08.038
    [80] ZHU J J, LI H L, ZHONG L Y, XIAO P, XU X L, YANG X G, ZHAO Z, LI J L. Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis[J]. ACS Catal,2014,4(9):2917−2940. doi: 10.1021/cs500606g
    [81] WANG Q Q, MA L P, WANG L C, WANG D D. Mechanisms for enhanced catalytic performance for NO oxidation over La2CoMnO6 double perovskite by A-site or B-site doping: Effects of the B-site ionic magnetic moments[J]. Chem Eng J,2019,372:728−741. doi: 10.1016/j.cej.2019.04.178
    [82] YANG J, GUO Y B. Nanostructured perovskite oxides as promising substitutes of noble metals catalysts for catalytic combustion of methane[J]. Chin Chem Lett,2018,29(2):252−260. doi: 10.1016/j.cclet.2017.09.013
    [83] WANG S, XU X L, ZHU J J, TANG D H, ZHAO Z. Effect of preparation method on physicochemical properties and catalytic performances of LaCoO3 perovskite for CO oxidation[J]. J Rare Earths,2019,37(9):970−977. doi: 10.1016/j.jre.2018.11.011
    [84] 王赛飞, 王曼, 钱恒力, 李立奇, 段二红. 多级孔La1−xSrxCoO3制备及其催化氧化甲烷性能[J]. 天然气化工,2017,42(6):64−68.

    WANG Sai-fei, WANG Man, QIAN Heng-li, LI Li-qi, DUAN Er-hong. Preparation of hierarchical pore La1−xSrxCoO3 catalysts and catalytic oxidation of methane over it[J]. Nat Gas Ind,2017,42(6):64−68.
    [85] ZHANG C X, ZHAO P Y, LIU S X, YU K. Three-dimensionally ordered macroporous perovskite materials for environmental applications[J]. Chin J Catal,2019,40(09):1324−1338. doi: 10.1016/S1872-2067(19)63341-3
    [86] ARANDIYAN H, SCOTT J, WANG Y, DAI H X, SUN H Y, AMAI R. Meso-molding three-dimensional macro-porous perovskites: a new approach to generate high-performance nanohybrid catalysts[J]. ACS Appl Mater Inter,2016,8:2457−2463. doi: 10.1021/acsami.5b11050
    [87] 张巍, 汤云灏, 尹艳山, 龚蔚成, 宋健, 马英, 阮敏, 徐慧芳, 陈冬林. 改性镧系钙钛矿催化剂强化挥发性有机物催化氧化的研究进展[J]. 化工进展,2021,40(3):1425−1437.

    ZHANG Wei, TANG Yun-hao, YIN Yan-shan, GONG Wei-cheng, SONG Jian, MA Ying, RUAN Min, XU Hui-fang, CHEN Dong-lin. Research progress in enhanced catalytic oxidation of VOCs by modified La-based perovskite catalyst[J]. Chem Ind Eng Prog,2021,40(3):1425−1437.
    [88] SANTOS S M, FRETY R, LISI L, CIMINO S, TEIXEIRA B S. LaNi1−xCoxO3 perovskites for methane combustion by chemical looping[J]. Fuel,2021,292:120187. doi: 10.1016/j.fuel.2021.120187
    [89] GAO X J, JIN Z H, HU R S, HU J N, BAI Y Q, WANG P, ZHANG J, ZHAO C X. Double perovskite anti-supported rare earth oxide catalyst CeO2/La2CoFeO6 for efficient ventilation air methane combustion[J]. J Rare Earths,2021,39(4):398−408. doi: 10.1016/j.jre.2020.07.022
    [90] DING Y, WANG S, ZHANG L, CHEN Z P, WANG M Z, WANG S D. A facile method to promote LaMnO3 perovskite catalyst for combustion of methane[J]. Catal Commun,2017,97:88−92. doi: 10.1016/j.catcom.2017.04.022
    [91] WANG M, WANG F, MA J P, LI M R, ZHANG Z, WANG Y H, ZHANG X C, XU J. The investigations on crystal plane effect of ceria on gold catalysis in the oxidative dehydrogenation of alcohols and amines in liquid phase[J]. Chem Commun,2014,50:292−294. doi: 10.1039/C3CC46180G
    [92] RUI S, STEPHANOPOULO F M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction[J]. Angew Chem Int Ed,2008,120:2926−2929. doi: 10.1002/ange.200705828
    [93] JING Z Y, LI H Y, JIANG Z D. The chemical interaction of support and active phase in sintering resistant La0.8Ca0.2FeO3 perovskite catalysts[J]. Fuel,2019,243:322−331. doi: 10.1016/j.fuel.2019.01.124
    [94] BASHAN V, UST Y. Perovskite catalysts for methane combustion: applications, design, effects for reactivity and partial oxidation[J]. Int J Energy Res,2019,43:1−35. doi: 10.1002/er.4139
    [95] YANG Z, LIU J, ZHANG L, ZHENG S, GUO M, YAN Y. Catalytic combustion of low-concentration coal bed methane over CuO/γ-Al2O3 catalyst: effect of SO2[J]. RSC Adv,2014,4:39394−39399. doi: 10.1039/C4RA05334F
    [96] ROSSO I, GARRONE E, GEOBALDO F, ONIDA B, SARACCO G, SPECCHIA V. Sulphur poisoning of LaMn1−xMgxO3-yMgO catalysts for methane combustion[J]. Appl Catal B: Environ,2001,34(1):29−41.
    [97] LOTT P, ECK M, DORONKIN D E, ZIMINA A, TISCHER S, POPESCU R, BELIN S, BRIOIS V, CASAPU M, GRUNWALDT J D, DEUTSCHMANN O. Understanding sulfur poisoning of bimetallic Pd-Pt methane oxidation catalysts and their regeneration[J]. Appl Catal B: Environ,2020,278:119244. doi: 10.1016/j.apcatb.2020.119244
    [98] ROSSO I, SARACCO G, SPECCHIA V, GARRONE E. Sulphur poisoning of LaCr0.5−xMnxMg0.5O3·yMgO catalysts for methane combustion[J]. Appl Catal B: Environ,2003,40(3):195−205.
    [99] LI T T, SUN W, ZHOU Z H, XIE T Y, CAO L M, YANG J. Di-metal-doped sulfur resisting perovskite catalysts for highly efficient H2-SCR of NO[J]. Environ Sci Pollut Res,2018,25(25):25504−25514.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1916
  • HTML全文浏览量:  443
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 修回日期:  2021-07-31
  • 网络出版日期:  2021-08-20
  • 刊出日期:  2022-02-12

目录

    /

    返回文章
    返回