留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柠檬酸量对水热合成CuO/Ce0.8Zr0.2O2催化水气变换制氢性能的影响

王丽宝 王宏浩 张磊 庆绍军 刘冬梅 高志贤 张海娟 官国清

王丽宝, 王宏浩, 张磊, 庆绍军, 刘冬梅, 高志贤, 张海娟, 官国清. 柠檬酸量对水热合成CuO/Ce0.8Zr0.2O2催化水气变换制氢性能的影响[J]. 燃料化学学报(中英文), 2022, 50(3): 337-345. doi: 10.19906/j.cnki.JFCT.2021078
引用本文: 王丽宝, 王宏浩, 张磊, 庆绍军, 刘冬梅, 高志贤, 张海娟, 官国清. 柠檬酸量对水热合成CuO/Ce0.8Zr0.2O2催化水气变换制氢性能的影响[J]. 燃料化学学报(中英文), 2022, 50(3): 337-345. doi: 10.19906/j.cnki.JFCT.2021078
WANG Li-bao, WANG Hong-hao, ZHANG Lei, QING Shao-jun, LIU Dong-mei, GAO Zhi-xian, ZHANG Hai-juan, GUAN Guo-qing. Effect of citric acid content on the hydrothermal synthesis of CuO/Ce0.8Zr0.2O2 catalytic water gas shift hydrogen production performance[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 337-345. doi: 10.19906/j.cnki.JFCT.2021078
Citation: WANG Li-bao, WANG Hong-hao, ZHANG Lei, QING Shao-jun, LIU Dong-mei, GAO Zhi-xian, ZHANG Hai-juan, GUAN Guo-qing. Effect of citric acid content on the hydrothermal synthesis of CuO/Ce0.8Zr0.2O2 catalytic water gas shift hydrogen production performance[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 337-345. doi: 10.19906/j.cnki.JFCT.2021078

柠檬酸量对水热合成CuO/Ce0.8Zr0.2O2催化水气变换制氢性能的影响

doi: 10.19906/j.cnki.JFCT.2021078
基金项目: 国家自然科学基金(21673270),辽宁省教育厅科学研究经费项目(L2019038)和辽宁省自然科学基金(2019-MS-221)资助
详细信息
    作者简介:

    王丽宝:1731811874@qq.com

    通讯作者:

    E-mail:lnpuzhanglei@163.com

    gaozx@sxicc.ac.cn

  • 中图分类号: O643

Effect of citric acid content on the hydrothermal synthesis of CuO/Ce0.8Zr0.2O2 catalytic water gas shift hydrogen production performance

Funds: The project was supported by the National Natural Science Foundation of China (21673270), Scientific Research Funds Project of Liaoning Education Department (L2019038), the Project of the Natural Science Fund in Liaoning Province (2019-MS-221)
  • 摘要: 采用水热法合成了Ce0.8Zr0.2O2固溶体,再经浸渍法负载活性组分制备了CuO/Ce0.8Zr0.2O2催化剂,考察了柠檬酸量对CuO/Ce0.8Zr0.2O2催化剂结构、性质及其催化水气变换反应制氢性能的影响。结果表明,不同柠檬酸量制备的CuO/Ce0.8Zr0.2O2催化剂的催化活性主要与Cu比表面积、还原性能及Ce0.8Zr0.2O2固溶体与CuO之间的相互作用有关。其中,柠檬酸浓度为0.04 mol/L所制备的催化剂具有较大的Cu比表面积,较低的CuO还原温度和较强的Ce0.8Zr0.2O2固溶体与CuO之间的相互作用,在水气变换制氢过程中具有较高的CO转化率,表现出了较好的催化活性。在反应温度为320 ℃,水气物质的量比n(H2O)/n(CO) = 2,总气体体积空速GHSV = 6600 h−1时,CO转化率接近热力学平衡值,为96.9%。
  • FIG. 1388.  FIG. 1388.

    FIG. 1388.  FIG. 1388.

    图  1  Ce0.8Zr0.2O2-CA4前驱体的热重曲线

    Figure  1  Thermogravimetric curve of Ce0.8Zr0.2O2-CA4 precursor

    图  2  Ce0.8Zr0.2O2固溶体的XRD谱图

    Figure  2  XRD spectrum of Ce0.8Zr0.2O2 solid solution

    a: CeO2; b: Ce0.8Zr0.2O2-CA2; c: Ce0.8Zr0.2O2-CA4; d: Ce0.8Zr0.2O2-CA6; e: Ce0.8Zr0.2O2-CA8

    图  3  CuO/Ce0.8Zr0.2O2催化剂的XRD谱图

    Figure  3  XRD spectra of CuO/Ce0.8Zr0.2O2 catalysts

    a: CuO/CeO2; b: CuO/Ce0.8Zr0.2O2-CA2; c: CuO/Ce0.8Zr0.2O2-CA4; d: CuO/Ce0.8Zr0.2O2-CA6; e: CuO/Ce0.8Zr0.2O2-CA8

    图  4  不同柠檬酸量制备的CuO/Ce0.8Zr0.2O2催化剂的H2-TPR谱图

    Figure  4  H2-TPR of CuO/Ce0.8Zr0.2O2 catalysts prepared with different citric acid content

    a: CuO/Ce0.8Zr0.2O2-CA2; b: CuO/Ce0.8Zr0.2O2-CA4; c: CuO/Ce0.8Zr0.2O2-CA6; d: CuO/Ce0.8Zr0.2O2-CA8

    图  5  不同柠檬酸量制备的CuO/Ce0.8Zr0.2O2催化剂的Ce 3d XPS谱图

    Figure  5  Ce 3d XPS spectra of CuO/Ce0.8Zr0.2O2 catalysts prepared with different citric acid content

    a: CuO/CeO2; b: CuO/Ce0.8Zr0.2O2-CA2; c: CuO/Ce0.8Zr0.2O2-CA4; d: CuO/Ce0.8Zr0.2O2-CA6; e: CuO/Ce0.8Zr0.2O2-CA8

    图  6  不同柠檬酸量制备的CuO/Ce0.8Zr0.2O2催化剂的Cu 2p XPS谱图

    Figure  6  Cu 2p XPS spectra of CuO/Ce0.8Zr0.2O2 catalysts prepared with different citric acid content

    a: CuO/CeO2; b: CuO/Ce0.8Zr0.2O2-CA2; c: CuO/Ce0.8Zr0.2O2-CA4; d: CuO/Ce0.8Zr0.2O2-CA6; e: CuO/Ce0.8Zr0.2O2-CA8

    图  7  不同柠檬酸量制备的CuO/Ce0.8Zr0.2O2催化剂的Cu LMM XPS谱图

    Figure  7  Cu LMM XPS spectra of CuO/Ce0.8Zr0.2O2 catalysts prepared with different citric acid content

    a: CuO/CeO2; b: CuO/Ce0.8Zr0.2O2-CA2; c: CuO/Ce0.8Zr0.2O2-CA4; d: CuO/Ce0.8Zr0.2O2-CA6; e: CuO/Ce0.8Zr0.2O2-CA8

    图  8  不同柠檬酸量制备的CuO/Ce0.8Zr0.2O2催化剂的Zr 3d XPS谱图

    Figure  8  Zr 3d XPS spectra of CuO/Ce0.8Zr0.2O2 catalysts prepared with different citric acid content

    a: CuO/Ce0.8Zr0.2O2-CA2; b: CuO/Ce0.8Zr0.2O2-CA4; c: CuO/Ce0.8Zr0.2O2-CA6; d: CuO/Ce0.8Zr0.2O2-CA8

    图  9  不同柠檬酸量制备的CuO/Ce0.8Zr0.2O2催化剂的O 1s XPS谱图

    Figure  9  O 1s XPS spectra of CuO/Ce0.8Zr0.2O2 catalysts prepared with different citric acid addition

    a: CuO/CeO2; b: CuO/Ce0.8Zr0.2O2-CA2; c: CuO/Ce0.8Zr0.2O2-CA4; d: CuO/Ce0.8Zr0.2O2-CA6; e: CuO/Ce0.8Zr0.2O2-CA8

    图  10  反应温度对催化剂活性的影响

    Figure  10  Effect of reaction temperature on the catalyst activity

    (reaction conditions: atmospheric, GHSV = 6600 h−1, n(H2O)/n(CO) = 2∶1) a: CuO/CeO2; b: CuO/Ce0.8Zr0.2O2-CA2; c: CuO/Ce0.8Zr0.2O2-CA4; d: CuO/Ce0.8Zr0.2O2-CA6; e: CuO/Ce0.8Zr0.2O2-CA8; f: equil

    图  11  变换温度对产物中CO含量的影响

    Figure  11  Effect of shift temperature on CO content in the product

    (reaction conditions: atmospheric, GHSV = 6600 h−1, n(H2O)/n(CO) = 2∶1) a: CuO/CeO2; b: CuO/Ce0.8Zr0.2O2-CA2; c: CuO/Ce0.8Zr0.2O2-CA4; d: CuO/Ce0.8Zr0.2O2-CA6; e: CuO/Ce0.8Zr0.2O2-CA8; f: equil

    图  12  CuO/Ce0.8Zr0.2O2-CA4催化剂稳定性能

    Figure  12  Diagram of stability on CuO/Ce0.8Zr0.2O2-CA4 catalyst

    (reaction condition: n(H2O)/n(CO) = 2∶1, GHSV = 6600 h−1, t = 320 ℃)

    表  1  不同柠檬酸量制备催化剂的元素含量

    Table  1  Element content of catalysts prepared with different citric acid content

    CatalystContent of element w/%Ce/Zr (mol ratio)
    CuCeZrO
    CuO/Ce0.8Zr0.2O2-CA2 4.3 66.0 13.0 16.7 3.7
    CuO/Ce0.8Zr0.2O2-CA4 4.4 66.0 12.9 16.7 3.7
    CuO/Ce0.8Zr0.2O2-CA6 4.3 66.4 12.7 16.6 3.8
    CuO/Ce0.8Zr0.2O2-CA8 4.6 65.9 13.0 16.5 3.7
    下载: 导出CSV

    表  2  催化材料的物理化学性质

    Table  2  Physicochemical properties of catalytic materials

    CatalystSurface area/(m2·g−1)Pore volume v/(cm3·g−1)Cu surface areaa/(m2·g−1)H2 production rateb/(μmol·kg−1·s−1)
    CeO223.90.08
    Ce0.8Zr0.2O2-CA255.80.09
    Ce0.8Zr0.2O2-CA469.20.15
    Ce0.8Zr0.2O2-CA679.80.10
    Ce0.8Zr0.2O2-CA847.40.09
    CuO/CeO221.20.071.52959.9
    CuO/ Ce0.8Zr0.2O2-CA237.40.072.43260.2
    CuO/ Ce0.8Zr0.2O2-CA458.80.145.53681.9
    CuO/ Ce0.8Zr0.2O2-CA673.10.094.83385.5
    CuO/ Ce0.8Zr0.2O2-CA840.50.091.22283.2
    a: determined by N2O experiments;
    b: H2 production was calculated when temperature is 320 ℃, n(H2O)/n(CO) = 2∶1, GHSV = 6600 h−1
    下载: 导出CSV

    表  3  CuO还原峰位置

    Table  3  Reduction peak positions of CuO

    CatalystPeak position t/℃
    peak αpeak β
    CuO/Ce0.8Zr0.2O2-CA2163193
    CuO/Ce0.8Zr0.2O2-CA4144171
    CuO/Ce0.8Zr0.2O2-CA6150181
    CuO/Ce0.8Zr0.2O2-CA8151189
    下载: 导出CSV

    表  4  催化剂Ce 3d的XPS曲线拟合

    Table  4  Fitting results of Ce 3d XPS curves of catalysts

    CatalystCe3+/(Ce3+ + Ce4+)/%
    CuO/CeO224.2
    CuO/Ce0.8Zr0.2O2-CA225.8
    CuO/Ce0.8Zr0.2O2-CA428.6
    CuO/Ce0.8Zr0.2O2-CA626.8
    CuO/Ce0.8Zr0.2O2-CA823.9
    下载: 导出CSV
  • [1] RYAN J G, KHALID A A, WILLIAM H G. Thermochemical production of hydrogen from hydrogen sulfide with iodine thermochemical cycles[J]. Int J Hydrogen Energy,2018,43(29):12939−12947. doi: 10.1016/j.ijhydene.2018.04.217
    [2] JACOBSON M Z, COLELLA W, GOLDEN D. Cleaning the air and improving health with hydrogen fuel-cell vehicles[J]. Science,2005,308(5730):1901−1905. doi: 10.1126/science.1109157
    [3] MASCHARAK P K. Cobaloxime-based photocatalytic devices for hydrogen production[J]. Angew Chem Int Ed,2008,47(3):564−567. doi: 10.1002/anie.200702953
    [4] 张燕杰, 陈崇启, 詹瑛瑛, 叶远松, 娄本勇, 郑国才, 林棋. CuO/ZrO2催化水煤气变换反应制氢: ZrO2载体焙烧温度的影响[J]. 燃料化学学报,2019,47(4):91−100.

    ZHANG Yan-jie, CHEN Chong-qi, ZHAN Ying-ying, YE Yuan-song, LOU Ben-yong, ZHENG Guo-cai, LIN Qi. CuO/ZrO2 catalysts for the production of H2 through the water-gas shift reaction: Effect of calcination temperature of ZrO2[J]. J Fuel Chem Technol,2019,47(4):91−100.
    [5] GOKHALE A A, DUMESIC J A, MAVRIKAKIS M. On the mechanism of low-temperature water gas shift reaction on copper[J]. J Am Chem Soc,2008,130(4):1402−1414. doi: 10.1021/ja0768237
    [6] WANG X Q, RODRIGUEZ J, HANSON J, GAMARRA D. In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: Complex interaction between metallic copper and oxygen vacancies of ceria[J]. J Phys Chem B,2006,110(1):428−34. doi: 10.1021/jp055467g
    [7] MARONO M, SANCHEZ J M, RUIZ E. Hydrogen-rich gas production from oxygen pressurized gasification of biomass using a Fe-Cr water gas shift catalyst[J]. Int J Hydrogen Energy,2010,35(1):37−45. doi: 10.1016/j.ijhydene.2009.10.078
    [8] REDDY G K, KIM S J, DONG J H, SMIRNIOTIS P G. Long-term WGS stability of Fe/Ce and Fe/Ce/Cr catalysts at high and low steam to CO ratios-XPS and mssbauer spectroscopic study[J]. Appl Catal A: Gen,2012,415:101−110.
    [9] REDDY G K, SMIRNIOTIS P G. Effect of copper as a dopant on the water gas shift activity of Fe/Ce and Fe/Cr modified ferrites[J]. Catal Lett,2011,141(1):27−32. doi: 10.1007/s10562-010-0465-2
    [10] FU W, BAO Z H, DING W Z, CHOU K. The synergistic effect of the structural precursors of Cu/ZnO/Al2O3 catalysts for water-gas shift reaction[J]. Catal Commun,2011,12(6):505−509. doi: 10.1016/j.catcom.2010.11.017
    [11] KOWALIK P, PROCHNIAK W, BOROWIECKI T. The effect of alkali metals doping on properties of Cu/ZnO/Al2O3 catalyst for water gas shift[J]. Catal Today,2011,176(1):144−148. doi: 10.1016/j.cattod.2011.01.028
    [12] FIGUEIREDO R T, SANTOS M S, ANDRADE H M, FIERRO J. Effect of alkali cations on the Cu/ZnO/Al2O3 low temperature water gas-shift catalyst[J]. Catal Today,2011,172(1):166−170. doi: 10.1016/j.cattod.2011.03.073
    [13] OSA A R, LUCAS A D, ROMERO A, CASERO P. High pressure water gas shift performance over a commercial non-sulfide CoMo catalyst using industrial coal-derived syngas[J]. Fuel,2012,97(1):428−434.
    [14] MUDIYANSELAGE K, SENANAYAKE S D, RAMIREZ P J, KUNDU S. Intermediates arising from the water-gas shift reaction over Cu surfaces: from UHV to near atmospheric pressures[J]. Top Catal,2015,58(4):271−280.
    [15] JEONG D W, NA H S, SHIM J O, JANG W J. Hydrogen production from low temperature WGS reaction on co-precipitated Cu-CeO2 catalysts: An optimization of Cu loading[J]. Int J Hydrogen Energy,2014,39(17):9135−9142. doi: 10.1016/j.ijhydene.2014.04.005
    [16] WANG S P, WANG X Y, HUANG J, ZHANG S M. The catalytic activity for CO oxidation of CuO supported on Ce0.8Zr0.2O2 prepared via citrate method[J]. Catal Commun,2007,8(3):231−236. doi: 10.1016/j.catcom.2006.06.006
    [17] JIANG L, ZHU H W, RAZZAQ R, ZHU M L. Effect of zirconium addition on the structure and properties of CuO/CeO2 catalysts for high-temperature water-gas shift in an IGCC system[J]. Int J Hydrogen Energy,2012,21(21):15914−15924.
    [18] JEONG D W, NA H S, SHIM J O, JANG W J, ROH H S. A crucial role for the CeO2-ZrO2 support for the low temperature water gas shift reaction over Cu-CeO2-ZrO2 catalysts[J]. Catal Sci Technol,2015,5:3706−3713. doi: 10.1039/C5CY00499C
    [19] 郑云弟, 林性贻, 郑起, 詹瑛瑛, 李达林, 魏可镁. ZrO2对Cu/CeO2-ZrO2水煤气变换催化剂结构、性能的影响[J]. 中国稀土学报,2005,6(8):679−683.

    ZHENG Yun-di, LIN Xing-yi, ZHENG Qi, ZHAN Ying-ying, LI Da-lin, WEI Ke-mei. Effects of ZrO2 content on structure and properties of Cu CeO2-ZrO2 catalysts for water-gas shift reaction[J]. J Chin Rare Earth Soc,2005,6(8):679−683.
    [20] GOMEZ I D, KOCEMBA I, RYNKOWSKI J M. Au/Ce1−xZrxO2 as effective catalysts for low-temperature CO oxidation[J]. App Catal B: Environ,2008,83:240−241. doi: 10.1016/j.apcatb.2008.02.012
    [21] VLAIC G, FORNASIERO P, GEREMIA S, KASPAR J. Relationship between the zirconia-promoted reduction in the Rh-loaded Ce0.5Zr0.5O2 mixed oxide and the Zr-O local structure[J]. J Catal,1997,168(2):386−392. doi: 10.1006/jcat.1997.1644
    [22] 张增庆, 樊君, 胡晓云, 刘恩周, 赵博, 康力敏. Ce0.5Zr0.5O2固溶体的制备、晶粒增长及应用研究[J]. 中国稀土学报,2013,31(2):217−221.

    ZHANG Zeng-qing, FAN Jun, HU Xiao-yun, LIU En-zhou, ZHAO Bo, KANG Li-min. Preparation, grain growth and application of Ce0.5Zr0.5O2[J]. J Chin Rare Earth Soc,2013,31(2):217−221.
    [23] YANG S Q, HE J P, ZHANG N, SUI X W, ZHANG L, YANG Z X. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol,2018,46(2):179−188. doi: 10.1016/S1872-5813(18)30010-0
    [24] ZHANG Y J, CHEN C Q, ZHANG Y Y, LIN Q, LOU B Y, ZHENG G C, ZHENG Q. Highly active Y-promoted CuO/ZrO2 catalysts for the production of hydrogen through water-gas shift reaction[J]. J Fuel Chem Technol,2017,45(9):1137−1149.
    [25] XIE H M, DU Q X, LI H, ZHOU G L, CHEN S M, JIAO Z J, REN J M. Catalytic combustion of volatile aromatic compounds over CuO-CeO2 catalyst[J]. Korean J Chem Eng,2017,34(7):1944−1951.
    [26] 庆绍军, 侯晓宁, 刘雅杰, 王磊, 李林东, 高志贤. Cu-Ni-Al尖晶石催化甲醇水蒸气重整制氢性能的研究[J]. 燃料化学学报,2018,46(10):69−76.

    QING Shao-jun, HOU Xiao-ning, LIU Ya-jie, WANG Lei, LI Lin-dong, GAO Zhi-xian. Catalytic performance of Cu-Ni-Al spine l for methanol steam reforming to hydrogen[J]. J Fuel Chem Technol,2018,46(10):69−76.
    [27] SHE W, JI T Q, CUI M X, YAN P F, WENG N S, LI W, LI G M. Catalytic performance of CeO2-supported Ni catalyst for hydrogenation of nitroarenes fabricated via coordination-assisted strategy[J]. ACS App Mater Interfaces,2018,10(17):14698−14707. doi: 10.1021/acsami.8b01187
    [28] BENNICI S, GERVASINI A, RAVASIO N, ZACCHERIA F. Optimization of tailoring of CuOx species of silica alumina supported catalysts for the selective catalytic reduction of NOx[J]. J Phys Chem B,2003,107(22):5168−5176. doi: 10.1021/jp022064x
    [29] PENG X OMASTA T, ROLLER J, MUSTAIN W E. Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells[J]. Front Energy,2017,11(3):299−309. doi: 10.1007/s11708-017-0495-1
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  627
  • HTML全文浏览量:  239
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-06
  • 修回日期:  2021-08-10
  • 网络出版日期:  2021-09-07
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回