留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

435 m2烧结机机头化学团聚强化细颗粒物及重金属脱除试验研究

揣兴 崔向峥 雍恒 熊卓 赵永椿 张军营

揣兴, 崔向峥, 雍恒, 熊卓, 赵永椿, 张军营. 435 m2烧结机机头化学团聚强化细颗粒物及重金属脱除试验研究[J]. 燃料化学学报(中英文), 2022, 50(3): 295-303. doi: 10.19906/j.cnki.JFCT.2021079
引用本文: 揣兴, 崔向峥, 雍恒, 熊卓, 赵永椿, 张军营. 435 m2烧结机机头化学团聚强化细颗粒物及重金属脱除试验研究[J]. 燃料化学学报(中英文), 2022, 50(3): 295-303. doi: 10.19906/j.cnki.JFCT.2021079
CHUAI Xing, CUI Xiang-zheng, YONG Heng, XIONG Zhuo, ZHAO Yong-chun, ZHANG Jun-ying. Experimental research on removal of fine particles and heavy metals by chemical agglomeration from the flue gas of 435 m2 sintering machine[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 295-303. doi: 10.19906/j.cnki.JFCT.2021079
Citation: CHUAI Xing, CUI Xiang-zheng, YONG Heng, XIONG Zhuo, ZHAO Yong-chun, ZHANG Jun-ying. Experimental research on removal of fine particles and heavy metals by chemical agglomeration from the flue gas of 435 m2 sintering machine[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 295-303. doi: 10.19906/j.cnki.JFCT.2021079

435 m2烧结机机头化学团聚强化细颗粒物及重金属脱除试验研究

doi: 10.19906/j.cnki.JFCT.2021079
基金项目: 国家重点研发计划(2019YFC1907000)和湖北省重点研发计划项目(2020BCA076)资助
详细信息
    作者简介:

    揣兴:1262187366@qq.com

    通讯作者:

    Tel:18971412881,E-mail:jyzhang@hust.edu.cn

  • 中图分类号: TK16

Experimental research on removal of fine particles and heavy metals by chemical agglomeration from the flue gas of 435 m2 sintering machine

Funds: The project was supported by the National R&D Program Project of China (2019YFC1907000) and the Key Research and Development Program of Hubei Province (2020BCA076)
  • 摘要: 针对某435 m2烧结机机头,在静电除尘器前安装化学团聚强化除尘系统,研究化学团聚强化细颗粒物及重金属(As、Cr、Cd、Ni、Cu、Pb、Zn七种)脱除特性。实验结果表明,化学团聚后,细颗粒团聚成较大颗粒,静电除尘器后烟气中PM10、PM2.5、PM1颗粒质量浓度均降低49%以上,静电除尘器飞灰平均粒度增长46%以上,细颗粒物团聚效果显著,提升了静电除尘器脱除细颗粒物效率;静电除尘器飞灰及细颗粒物中重金属质量浓度上升,静电除尘器后烟气中重金属质量浓度均下降,表明化学团聚作用促使气态重金属向颗粒态重金属及飞灰中迁移,细颗粒重金属团聚长大。化学团聚不仅可以强化细颗粒物的脱除,同时有效提升了重金属的脱除效率。
  • FIG. 1384.  FIG. 1384.

    FIG. 1384.  FIG. 1384.

    图  1  烧结机机头化学团聚系统

    Figure  1  Chemical agglomeration system of sintering machine head

    图  2  细颗粒物化学团聚机制

    Figure  2  Chemical agglomeration mechanism of fine particles

    图  3  飞灰粒度分布

    Figure  3  Particle size distribution of fly ash

    (a): first electric field fly ash; (b): second electric field fly ash; (c): third electric field fly ash

    图  4  飞灰微观形貌

    Figure  4  Microstructure of fly ash

    (a): before agglomeration; (b): after agglomeration

    图  5  飞灰的XRD谱图

    Figure  5  XRD spectrum of fly ash

    图  6  颗粒物浓质量度分布

    Figure  6  Concentration distribution of particulate matter

    图  7  团聚作用除尘提升率

    Figure  7  Dust removal rate of agglomeration

    图  8  总尘及PM10+颗粒物中重金属质量浓度变化

    Figure  8  Changes of heavy metal concentration in total dust (a) and PM10+ particles (b)

    图  9  细颗粒物中重金属质量浓度变化

    Figure  9  Change of heavy metal concentration in fine particulate matter

    (a): As; (b): Cr; (c): Cd; (d): Ni; (e): Cu; (f): Pb; (g): Zn

    图  10  烟气中气态重金属质量浓度变化

    Figure  10  Change of gaseous heavy metal concentration in flue gas

    图  11  烟气中气态与PM2.5颗粒物上重金属质量浓度之和变化

    Figure  11  Change of the sum of heavy metal concentrations in gaseous and PM2.5 particles in flue gas

    表  1  飞灰XRD半定量分析

    Table  1  XRD semi-quantitative analysis results of fly ash

    SampleContent w/%
    Fe2O3CaSO4CaMg(CO3)2CaCO3SiO2KCl
    Fly ash before agglomeration30.619.129.99.83.57.1
    Fly ash after agglomeration29.819.729.510.44.46.2
    下载: 导出CSV

    表  2  固体产物中无机元素含量

    Table  2  The content of inorganic elements in the solid product

    ElementSinterFirst electric field fly ash/%Second electric field fly ash/%Third electric field fly ash/%
    before agglomerationafter agglomerationbefore agglomerationafter agglomerationbefore agglomerationafter agglomeration
    Mg 1.48 0.76 1.92 0.77 1.82 0.68 2.02
    Al 1.35 1.28 1.57 1.28 1.15 1.28 1.63
    Si 5.09 1.90 3.37 1.78 3.77 1.52 3.72
    P 0.62 0.15 0.32 0.29 0.27 0.29 0.32
    S 3.01 4.07 3.67 3.22 3.18 3.43 2.66
    Cl 0.26 24.32 22.26 25.35 21.73 34.22 21.70
    K 0.02 3.40 2.21 1.51 1.33 2.35 1.39
    Ca 11.42 9.73 11.84 10.11 11.56 8.97 11.54
    Mn 0.17 0.19 0.19 0.21 0.16 0.22 0.23
    Fe 76.55 51.01 50.90 53.56 53.25 43.97 53.13
    Pb 0.02 1.73 1.75 1.91 1.78 2.89 1.64
    下载: 导出CSV

    表  3  固体产物中重金属含量

    Table  3  Content of heavy metals in the solid product (μg·g−1)

    ElementSinterFirst electric field fly ashSecond electric field fly ashThird electric field fly ash
    before agglomerationafter agglomerationbefore agglomerationafter agglomerationbefore agglomerationafter agglomeration
    As19.4146.9152.4244.8448.0647.0964.74
    Cr10.7018.7721.4818.1123.8521.9932.84
    Cd0.25145.38222.01152.67222.38167.05221.59
    Cu12.54403.24432.48459.30464.55481.48492.90
    Ni8.487.2510.1612.8816.6514.5630.70
    Pb10.893994.964263.504350.944581.205327.825684.38
    Zn102.891350.021440.371534.941633.351546.681737.77
    下载: 导出CSV
  • [1] LIU F, XUE Z, XU P, DU J, CHEN W. Comparative study on pollutant emission characteristics of typical sintering machines in iron and steel industry[J]. Res Environ Sci,2020,33(4):849−858.
    [2] GUO Y Y, GAO X, ZHU T Y, LUO L, ZHENG Y. Chemical profiles of PM emitted from the iron and steel industry in northern China[J]. Atmos Environ,2017,150(3):187−197.
    [3] GB/28662—2012, 钢铁烧结、球团工业大气污染物排放标准[S].

    GB/28662—2012, Emission standard of air pollutants for sintering and pelletizing of iron and steel industry [S].
    [4] GB/28664—2012, 炼钢工业大气污染物排放标准[S].

    GB/28664—2012, Emission standard of air pollutants for steel smelt industry [S].
    [5] ZHAO Y, NIELSEN C P, LEI Y, MCELROY M B, HAO J. Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China[J]. Atmos Chem Phys,2011,11(222):2179−2196.
    [6] 伯鑫, 甄瑞卿, 屈加豹, 赵晓宏, 田军, 张红, 李冬溦, 周北海. 中国钢铁行业大气污染物排放清单管理系统研究[J]. 环境污染与防治,2017,39(5):578−582.

    BAI Xin, ZHEN Rui-qing, QU Jia-bao, ZHAO Xiao-hong, TIAN Jun, ZHANG Hong, LI Dong-Wei, ZHOU Bei-hai. Research on the management system of air pollutant emission inventory in China's iron and steel industry[J]. Environ Pollut Control,2017,39(5):578−582.
    [7] WEI F, ZHANG J Y, ZHENG C G. Agglomeration rate and action forces between atomized particles of agglomerator and inhaled-particles from coal combustion[J]. J Environ Sci,2005,17(2):335−339.
    [8] 张光学, 刘建忠, 周俊虎, 岑可法. 燃煤飞灰低频下声波团聚的实验研究[J]. 化工学报,2009,60(4):1001−1006. doi: 10.3321/j.issn:0438-1157.2009.04.029

    ZHANG Guang-guang, LIU Jian-zhong, ZHOU Jun-hu, CEN Ke-fa. Experimental study on acoustic agglomeration of coal-fired fly ash at low frequency[J]. J Chem Ind Eng,2009,60(4):1001−1006. doi: 10.3321/j.issn:0438-1157.2009.04.029
    [9] LAITINEN A, HAUTANEN J, KESKINEN J, KAUPPINEN E, JOKINIEMI J, LEHTINEN K. Bipolar charged aerosol agglomeration with alternating electric field in laminar gas flow[J]. J Electrost,1996,38(4):303−315. doi: 10.1016/S0304-3886(96)00038-1
    [10] LIU J X, GAO J H, GAO J M, WANG X F, WU S H. Agglomeration of particles during coal combustion in multistage spouted fluidized tower[J]. Korean J Chem Eng,2009,26(3):907−912. doi: 10.1007/s11814-009-0152-4
    [11] GAO J, LIU J, GAO J, QIAN D, WANG X, WU S. Modelling and experimental study on agglomeration of particles from coal combustion in multistage spouted fluidized tower[J]. Adv Powder Technol,2009,20(4):375−382. doi: 10.1016/j.apt.2009.06.005
    [12] 王宇翔. 300 MW燃煤电站细微粒物化学团聚系统设计及团聚数值模拟[D]. 武汉: 华中科技大学, 2011.

    WANG Yu-xiang. Design and numerical simulation of chemical agglomeration system for fine particulate matter in 300 MW coal-fired power station[D]. Wuhan: Huazhong University of Science and Technology, 2011.
    [13] RAJNIAK P, MANCINELLI C, CHERN R T, STEPANEK F, FARBER L, HILL B T. Experimental study of wet granulation in fluidized bed: Impact of the binder properties on the granule morphology[J]. Int J Pharm,2007,334(1/2):92−102. doi: 10.1016/j.ijpharm.2006.10.040
    [14] 魏凤, 张军营, 郑楚光, 陈俊. 燃煤超细颗粒团聚模拟研究[J]. 工程热物理学报,2005,26(3):515−518. doi: 10.3321/j.issn:0253-231X.2005.03.047

    WEI Feng, ZHANG Jun-ying, ZHENG Chu-guang, CHEN Jun. Simulation study on coal-fired ultrafine particle agglomeration[J]. J Eng Thermophys,2005,26(3):515−518. doi: 10.3321/j.issn:0253-231X.2005.03.047
    [15] 洪亮, 王礼鹏, 祁慧, 张成, 赵永椿, 陈刚, 丘纪华, 张军营. 细颗粒物团聚性能实验研究[J]. 热力发电,2014,43(9):124−128. doi: 10.3969/j.issn.1002-3364.2014.09.124

    HONG Liang, WANG Li-peng, QI Hui, ZHANG Cheng, ZHAO Yong-chun, CHEN Gang, QIU Ji-hua, ZHANG Jun-ying. Experimental study on the agglomeration performance of fine particles[J]. Therm Power Gener,2014,43(9):124−128. doi: 10.3969/j.issn.1002-3364.2014.09.124
    [16] 盘思伟, 张凯, 郭沂权, 张军营, 赵永椿, 李海龙, 郑楚光. 燃煤飞灰化学团聚促进机制研究[J]. 热力发电,2016,45(6):19−25. doi: 10.3969/j.issn.1002-3364.2016.06.019

    PAN Si-wei, ZHANG Kai, GUO Yi-quan, ZHANG Jun-ying, ZHAO Yong-chun, LI Hai-long, ZHENG Chu-guang. Research on the promotion mechanism of coal-fired fly ash chemical agglomeration[J]. Therm Power Gener,2016,45(6):19−25. doi: 10.3969/j.issn.1002-3364.2016.06.019
    [17] 刘勇, 赵汶, 刘瑞, 杨林军. 化学团聚促进电除尘脱除PM2.5的实验研究[J]. 化工学报,2014,65(9):3609−3616. doi: 10.3969/j.issn.0438-1157.2014.09.041

    LIU Yong, ZHAO Wen, LIU Rui, YANG Lin-jun. Experimental study on chemical agglomeration to promote the removal of PM2.5 by electrostatic precipitator[J]. J Chem Ind Eng,2014,65(9):3609−3616. doi: 10.3969/j.issn.0438-1157.2014.09.041
    [18] 李海龙, 张军营, 赵永椿, 杨艳, 郑楚光. 燃煤细颗粒固液团聚实验研究[J]. 中国电机工程学报,2009,29(29):62−66. doi: 10.3321/j.issn:0258-8013.2009.29.012

    LI Hai-long, ZHANG Jun-ying, ZHAO Yong-chun, YANG Yan, ZHENG Chu-guang. Experimental study on solid-liquid agglomeration of coal-fired fine particles[J]. Proc CSEE,2009,29(29):62−66. doi: 10.3321/j.issn:0258-8013.2009.29.012
    [19] 郭沂权, 张军营, 赵永椿, 王少龙, 江城, 郑楚光. 50 MW燃煤电站锅炉细颗粒物化学团聚示范工程试验研究[J]. 中国电机工程学报,2016,36(1):87−94.

    GUO Yi-quan, ZHANG Jun-ying, ZHAO Yong-chun, WANG Shao-long, JIANG Cheng, ZHENG Chu-guang. Experimental study on the chemical agglomeration of fine particles in a 50 MW coal-fired power station boiler[J]. Proc CSEE,2016,36(1):87−94.
    [20] BALDREY K E. Advanced flue gas conditioning as a retrofit upgrade to enhance PM collection from coal-fired electric utility boilers[R]. Littleton Colorado: ADA Environmental Solutions, 2002.
    [21] DURHAM M D, SCHLAGER R J, EBNER T G, STEWART R M, BUSTARD C J. Method and apparatus for decreased undesired particle emissions in gas streams : US, 5893943[P]. 1999-04-13.
    [22] 胡斌, 刘勇, 杨春敏, 侯大伟, 袁竹林, 杨林军. 化学团聚促进电除尘脱除烟气中PM2.5和SO3[J]. 化工学报,2016,67(9):3902−3909.

    HU Bin, LIU Yong, YANG Chun-min, HOU Da-wei, YUAN Zhu-lin, YANG Lin-jun. Chemical agglomeration promotes the removal of PM2.5 and SO3 from flue gas by electrostatic precipitator[J]. J Chem Ind Eng,2016,67(9):3902−3909.
    [23] 赵汶, 刘勇, 鲍静静, 耿俊峰, 杨林军. 化学团聚促进燃煤细颗粒物脱除的试验研究[J]. 中国电机工程学报,2013,33(20):52−58.

    ZHAO Wen, LIU Yong, BAO Jing-jing, GENG Jun-feng, YANG Lin-jun. Experimental study on chemical agglomeration to promote the removal of coal fine particles[J]. Proc CSEE,2013,33(20):52−58.
    [24] 刘加勋, 高继慧, 高建民, 陈国庆, 吴少华. 基于快速聚沉理论的燃煤颗粒物化学团聚模型[J]. 煤炭学报,2009,34(10):1388−1393. doi: 10.3321/j.issn:0253-9993.2009.10.018

    LIU Jia-xun, GAO Ji-hui, GAO Jian-min, CHEN Guo-qing, WU Shao-hua. Chemical agglomeration model of coal-fired particles based on rapid coagulation theory[J]. J China Coal Soc,2009,34(10):1388−1393. doi: 10.3321/j.issn:0253-9993.2009.10.018
    [25] 赵永椿, 张军营, 魏凤, 陈俊, 郑楚光. 燃煤超细颗粒物团聚促进机制的实验研究[J]. 化工学报,2007,58(11):2876−2881. doi: 10.3321/j.issn:0438-1157.2007.11.032

    ZHAO Yong-chun, ZHANG Jun-ying, WEI Feng, CHEN Jun, ZHENG Chu-guang. Experimental study on the agglomeration promotion mechanism of coal-fired ultrafine particles[J]. J Chem Ind Eng,2007,58(11):2876−2881. doi: 10.3321/j.issn:0438-1157.2007.11.032
    [26] 李扬, 何永来, 靳立军, 刘静超, 胡浩权. 燃煤电厂异相凝并飞灰重金属淋滤特性[J]. 燃料化学学报,2020,48(11):127−134.

    LI Yang, HE Yong-lai, JIN Li-jun, LIU Jing-chao, HU Hao-quan. Heterogeneous condensation and heavy metal leaching characteristics of fly ash from coal-fired power plants[J]. J Fuel Chem Technol,2020,48(11):127−134.
    [27] 华伟, 孙和泰, 祁建民, 黄治军, 石志鹏, 段伦博. 燃煤电厂超低排放机组重金属铅, 砷排放特性[J]. 热力发电,2019,48(10):65−70.

    HUA Wei, SUN He-tai, QI Jian-min, HUANG Zhi-jun, SHI Zhi-peng, DUAN Lun-bo. Heavy metal lead and arsenic emission characteristics of ultra-low emission units in coal-fired power plants[J]. Therm Power Gener,2019,48(10):65−70.
    [28] 易秋. 燃煤机组烟气重金属污染物排放特征研究[D]. 太原: 太原理工大学, 2016.

    YI Qiu. Study on the characteristics of heavy metal pollutant emissions from coal-fired unit flue gas[D]. Taiyuan: Taiyuan University of Technology, 2016.
    [29] GONG B, KIM J, KIM H, LEE S, HONG J. A study on the characteristics of condensable fine particles in flue gas[J]. J Korean Surg Soc,2016,32(5):501−512.
    [30] 刘静超, 赵永椿, 何永来, 纪禺山, 崔向峥, 肖日宏, 张军营, 郑楚光. 330 MW燃煤机组异相凝并对重金属排放控制的实验研究[J]. 燃料化学学报,2020,48(11):119−126.

    LIU Jing-chao, ZHAO Yong-chun, HE Yong-lai, JI Yu-shan, CUI Xiang-zheng, XIAO Ri-hong, ZHANG Jun-ying, ZHENG Chu-guang. Experimental study of 330 MW coal-fired unit heterogeneous condensation and heavy metal emission control[J]. J Fuel Chem Technol,2020,48(11):119−126.
    [31] 郭沂权, 赵永椿, 李高磊, 张军营. 300 MW燃煤电站化学团聚强化飞灰细颗粒物排放控制的研究[J]. 中国电机工程学报,2019,39(3):754−763.

    GUO Yi-quan, ZHAO Yong-chun, LI Gao-lei, ZHANG Jun-ying. Study on strengthening fine particulate matter emission control of fly ash by chemical agglomeration in 300 MW coal-fired power plant[J]. Proc CSEE,2019,39(3):754−763.
    [32] JIN L, LUO X S, FU P Q, LI X D. Airborne particulate matter pollution in urban China: A chemical mixture perspective from sources to impacts[J]. Natl Sci Rev,2017,4(4):593−610. doi: 10.1093/nsr/nww079
    [33] JUNG C H, MATSUTO T, TANAKA N. Metal distribution in incineration residues of municipal solid waste (MSW) in Japan[J]. Waste Manage,2004,24(4):381−391. doi: 10.1016/S0956-053X(03)00137-5
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  419
  • HTML全文浏览量:  218
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-04
  • 修回日期:  2021-08-30
  • 网络出版日期:  2021-09-29
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回