留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co3O4/WO3复合催化剂的合成及可见光催化转化甲烷制甲醇

杨娟 陈鹏宇 戴俊 荣丽青 王大钊

杨娟, 陈鹏宇, 戴俊, 荣丽青, 王大钊. Co3O4/WO3复合催化剂的合成及可见光催化转化甲烷制甲醇[J]. 燃料化学学报(中英文), 2022, 50(4): 464-473. doi: 10.19906/j.cnki.JFCT.2021086
引用本文: 杨娟, 陈鹏宇, 戴俊, 荣丽青, 王大钊. Co3O4/WO3复合催化剂的合成及可见光催化转化甲烷制甲醇[J]. 燃料化学学报(中英文), 2022, 50(4): 464-473. doi: 10.19906/j.cnki.JFCT.2021086
YANG Juan, CHEN Peng-yu, DAI Jun, RONG Li-qing, WANG Da-zhao. Synthesis of Co3O4/WO3 composite catalysts for visible-light-driven conversion of methane to methanol[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 464-473. doi: 10.19906/j.cnki.JFCT.2021086
Citation: YANG Juan, CHEN Peng-yu, DAI Jun, RONG Li-qing, WANG Da-zhao. Synthesis of Co3O4/WO3 composite catalysts for visible-light-driven conversion of methane to methanol[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 464-473. doi: 10.19906/j.cnki.JFCT.2021086

Co3O4/WO3复合催化剂的合成及可见光催化转化甲烷制甲醇

doi: 10.19906/j.cnki.JFCT.2021086
基金项目: 国家自然科学基金(52074103),河南省自然科学基金(202300410181)和河南省高等学校重点科研项目(21A440008)资助
详细信息
    通讯作者:

    E-mail: daijun@hpu.edu.cn

  • 中图分类号: O643.32; TQ223.1

Synthesis of Co3O4/WO3 composite catalysts for visible-light-driven conversion of methane to methanol

Funds: The project was supported by the National Natural Science Foundation of China (52074103), the Natural Science Foundation of Henan Province (202300410181) and Key Scientific Research Foundation of Education Department of Henan Province (21A440008).
  • 摘要: 本研究通过水热合成法并结合表面浸渍过程制备了Co3O4/WO3复合催化剂,采用X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、透射电镜(TEM)、紫外-可见吸收光谱等测试技术对Co3O4/WO3复合物的结构组成与微观形貌进行系统表征,在室温可见光照射下研究了Co3O4/WO3对甲烷转化制甲醇的催化性能。结果表明,复合Co3O4可显著提升甲烷光催化转化性能,最优催化剂3.0% Co3O4/WO3在可见光照射2 h时的甲烷转化量为2041 μmol/g,对应的甲醇产生量及其选择性为1194 μmol/g和58.5%,分别为单一WO3的4.03倍和2.39倍,优于多数文献报道的甲烷转化异相光催化剂,且具有良好的循环稳定性。结合瞬态光电流与电子顺磁共振测试结果,揭示了引入Co3O4增强复合催化剂甲烷转化性能的内在机理,对设计光驱动甲烷转化制甲醇催化剂具有重要理论指导意义。
  • FIG. 1468.  FIG. 1468.

    FIG. 1468.  FIG. 1468.

    图  1  Co3O4/WO3系列催化剂的XRD谱图

    Figure  1  Powder XRD patterns of Co3O4/WO3 composite catalysts

    图  2  (a) 单一WO3与(b) 3.0% Co3O4/WO3的SEM照片、((c)−(f)) 3.0% Co3O4/WO3的EDS能谱面扫图

    Figure  2  SEM images of (a) WO3 and (b) 3.0% Co3O4/WO3, ((c)−(f)) EDS elemental mapping images of 3.0% Co3O4/WO3 sample

    图  3  3.0% Co3O4/WO3的XPS谱图:(a) XPS全谱、(b) W 4f高分辨XPS谱图、(c) Co 2p高分辨XPS谱图

    Figure  3  XPS results of 3.0% Co3O4/WO3: (a) XPS survey spectrum, high-resolution XPS spectra of (b) W 4f and (c) Co 2p

    图  4  复合催化剂3.0% Co3O4/WO3的TEM照片(a)与高分辨TEM照片(b)

    Figure  4  TEM image (a) and high resolution TEM image (b) of 3.0% Co3O4/WO3

    图  5  单一WO3与3.0% Co3O4/WO3样品的(a)紫外-可见吸收光谱图、(b)莫特-肖特基曲线

    Figure  5  (a) UV-visible absorption spectra and (b) Mott-Schottky curves of pure WO3 and 3.0% Co3O4/WO3 sample

    图  6  Co3O4/WO3光催化体系的(a)甲烷转化量、甲醇产生量及其选择性,(b)副产物乙烷与CO2生成量

    Figure  6  (a) Methane conversion, methanol productivity and selectivity, (b) byproduct C2H6 and CO2 productivity in Co3O4/WO3 photocatalytic system Reaction conditions: 20 mg catalyst, H2O2 concentration 3.0 mmol/L, irradiation time 2 h, 300 W Xenon lamp with filter (420 < λ < 780 nm light intensity 100 mW/cm2)

    图  7  H2O2浓度与入射光强对甲烷转化、产物生成与甲醇选择性的影响

    Figure  7  Effects of H2O2 concentration and light intensity on CH4 conversion, products generation and CH3OH selectivity Reaction conditions: 20 mg catalyst, irradiation time 2 h, experimental temperature (20 ±1) ℃, 300 W Xenon lamp with filter (420 nm < λ < 780 nm)

    图  8  (a) 3.0% Co3O4/WO3催化剂循环实验、(b) 7次循环实验前后3.0% Co3O4/WO3的XRD谱图

    Figure  8  (a) Cyclic experiments of 3.0% Co3O4/WO3 catalyst and (b) XRD pattern of 3.0% Co3O4/WO3 before and after 7 cycle tests (the inset is SEM image of used catalyst)

    图  9  (a) 可见光照射下WO3与Co3O4/WO3样品的瞬态光电流响应谱、(b) 单一WO3与3.0% Co3O4/WO3的室温稳态PL光谱(激发波长376 nm)

    Figure  9  (a) Transient photocurrent response spectra of WO3 and Co3O4/WO3 samples under visible light, (b) Room temperature steady-state PL spectra of bare WO3 and 3.0% Co3O4/WO3 (excitation wavelength 376 nm)

    图  10  WO3、Co3O4/WO3悬浮液的TEMPO电子顺磁共振信号(a)与DMPO/·OH加合物的EPR信号(b)

    Figure  10  Electron paramagnetic resonance signals of TEMPO (a) and DMPO/·OH adducts (b) in WO3 and Co3O4/WO3 suspension

    图  11  复合Co3O4对WO3光催化转化甲烷制甲醇性能的增强机理示意图

    Figure  11  Schematic diagram of the enhanced mechanism for photocatalytic conversion of CH4 to methanol over WO3 by introducing Co3O4

    表  1  光催化转化甲烷制甲醇各种催化剂的性能

    Table  1  Performance comparison of various catalysts for photocatalytic conversion of methane to methanol

    PhotocatalystCH3OH yield/(μmol·g−1)CH3OH selectivity/%Ref.
    Au/BP nanosheets113.599[14]
    La doped WO36346[18]
    Mesoporous WO3/FeCl313559[19]
    FeOx/TiO2105690[27]
    Bi2WO6 flowers1528[34]
    Bipyramid BiVO411285[11]
    FeOOH/Li0.1WO334255[35]
    Bi-V-BEA zeolite2276[36]
    g-C3N4@Cs0.33WO3451[37]
    3.0% Co3O4/WO3119458.5this work
    下载: 导出CSV
  • [1] MCFARLAND E. Unconventional chemistry for unconventional natural gas[J]. Science,2012,338(6105):340−342. doi: 10.1126/science.1226840
    [2] SCHWACH P, PAN X L, BAO X H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects[J]. Chem Rev,2017,117(13):8497−8520. doi: 10.1021/acs.chemrev.6b00715
    [3] ZHAN C G, NICHOLS J A, DIXON D A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies[J]. J Phys Chem A,2003,107(20):4184−4195. doi: 10.1021/jp0225774
    [4] DA SILVA M J. Synthesis of methanol from methane: Challenges and advances on the multi-step (syngas) and one-step routes (DMTM)[J]. Fuel Process Technol,2016,145:42−61. doi: 10.1016/j.fuproc.2016.01.023
    [5] KWON Y, KIM T Y, KWON G, YI J, LEE H. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion[J]. J Am Chem Soc,2017,139(48):17694−17699. doi: 10.1021/jacs.7b11010
    [6] AGARWAL N, FREAKLEY S J, MCVICKER R U, ALTHAHBAN S M, DIMITRATOS N, HE Q, MORGAN D J, JENKINS R L, WILLOCK D J, TAYLOR S H, KIELY C J, HUTCHINGS G J. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions[J]. Science,2017,358(6360):223−227. doi: 10.1126/science.aan6515
    [7] 于贵阳. 空间场效应提升半导体光催化产氢性能研究[D]. 长春: 吉林大学, 2019.

    YU Gui-yang. The study of spatial field effect on improving semiconductor photocatalytic hydrogen evolution[D]. Changchun: Jilin University, 2019.
    [8] YANG J, HAO J Y, XU S Y, WANG Q, DAI J, ZHANG A C, PANG X C. InVO4/β-AgVO3 nanocomposite as a direct Z-Scheme photocatalyst toward efficient and selective visible-light-driven CO2 reduction[J]. ACS Appl Mater Inter,2019,11(35):32025−32037. doi: 10.1021/acsami.9b10758
    [9] LI H, SHANG J, AI Z H, ZHANG L Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets[J]. J Am Chem Soc,2015,137(19):6393−6399. doi: 10.1021/jacs.5b03105
    [10] 许振民, 卞振锋. 光催化甲烷转化研究进展[J]. 物理化学学报,2020,36(3):1907013. doi: 10.3866/PKU.WHXB201907013

    XU Zhen-min, BIAN Zhen-feng. Photocatalytic methane conversion[J]. Acta Phys-Chim Sin,2020,36(3):1907013. doi: 10.3866/PKU.WHXB201907013
    [11] ZHU W L, SHEN M K, FAN G Z, YANG A, MEYER J R, OU Y N, YIN B, FORTNER J, FOSTON M, LI Z S, ZOU Z G, SADTLER B. Facet-dependent enhancement in the activity of bismuth vanadate microcrystals for the photocatalytic conversion of methane to methanol[J]. ACS Appl Nano Mater,2018,1(12):6683−6691. doi: 10.1021/acsanm.8b01490
    [12] LIU H S, SONG C J, ZHANG L, ZHANG J J, WANG H J, WILKINSON D P. A review of anode catalysis in the direct methanol fuel cell[J]. J Power Sources,2006,155(2):95−110. doi: 10.1016/j.jpowsour.2006.01.030
    [13] SONG H, MENG X G, WANG S Y, ZHOU W, WANG X S, KAKO T, YE J H. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water[J]. J Am Chem Soc,2019,141(51):20507−20515. doi: 10.1021/jacs.9b11440
    [14] LUO L H, LUO J, LI H L, REN F N, ZHANG Y F, LIU A D, LI W-X, ZENG J. Water enables mild oxidation of methane to methanol on gold single-atom catalysts[J]. Nat Commun,2021,12:1218. doi: 10.1038/s41467-021-21482-z
    [15] YU L H, SHAO Y, LI D Z. Direct combination of hydrogen evolution from water and methane conversion in a photocatalytic system over Pt/TiO2[J]. Appl Catal B: Environ,2017,204:216−223. doi: 10.1016/j.apcatb.2016.11.039
    [16] 詹瑛瑛, 康亮, 周玉常, 蔡国辉, 陈崇启, 江莉龙. 镁助剂改性Pd/Al2O3甲烷催化燃烧催化剂: Mg/Al物质的量比对催化剂载体及活性物种形成的影响[J]. 燃料化学学报,2019,47(10):1235−1244. doi: 10.3969/j.issn.0253-2409.2019.10.010

    ZHAN Ying-ying, KANG Liang, ZHOU Yu-chang, CAI Guo-hui, CHEN Chong-qi, JIANG Li-long. Pd/Al2O3 catalysts modified with Mg for catalytic combustion of methane: Effect of Mg/Al mole ratios on the supports and active PdOx formation[J]. J Fuel Chem Technol,2019,47(10):1235−1244. doi: 10.3969/j.issn.0253-2409.2019.10.010
    [17] 杨欢, 王桂赟, 田伟松, 童春杰. 单斜相WO3的水热合成及其光催化性能的研究[J]. 燃料化学学报,2018,46(11):1359−1369. doi: 10.3969/j.issn.0253-2409.2018.11.010

    YANG Huan, WANG Gui-yun, TIAN Wei-song, TONG Chun-jie. Hydrothermal synthesis of monoclinic WO3 and its photocatalytic hydrogen production performance[J]. J Fuel Chem Technol,2018,46(11):1359−1369. doi: 10.3969/j.issn.0253-2409.2018.11.010
    [18] VILLA K, MURCIA-LÓPEZ S, MORANTE J R, ANDREU T. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol[J]. Appl Catal B: Environ,2016,187:30−36. doi: 10.1016/j.apcatb.2016.01.032
    [19] VILLA K, MURCIA-LÓPEZ S, ANDREU T, MORANTE J R. Mesoporous WO3 photocatalyst for the partial oxidation of methane to methanol using electron scavengers[J]. Appl Catal B: Environ,2015,163:150−155. doi: 10.1016/j.apcatb.2014.07.055
    [20] 王冰, 赵美明, 周勇, 闫世成, 邹志刚. 光催化还原二氧化碳制备太阳燃料研究进展及挑战[J]. 中国科学: 技术科学,2017,47(3):286−296. doi: 10.1360/N092016-00434

    WANG Bing, ZHAO Mei-ming, ZHOU Yong, YAN Shi-cheng, ZOU Zhi-gang. Recent progress and challenge in research of photocatalytic reduction of CO2 to solar fuels[J]. Sci Sin Tech,2017,47(3):286−296. doi: 10.1360/N092016-00434
    [21] 孙尚聪, 张旭雅, 刘显龙, 潘伦, 张香文, 邹吉军. 光催化全解水助催化剂的设计与构建[J]. 物理化学学报,2020,36(3):1905007. doi: 10.3866/PKU.WHXB201905007

    SUN Shang-cong, ZHANG Xu-ya, LIU Xian-long, PAN Lun, ZHANG Xiang-wen, ZOU Ji-jun. Design and construction of cocatalysts for photocatalytic water splitting[J]. Acta Phys-Chim Sin,2020,36(3):1905007. doi: 10.3866/PKU.WHXB201905007
    [22] 陈鹏, 周莹, 董帆. 二维光催化材料电子结构和性能调控策略研究进展[J]. 物理化学学报,2021,37(8):2010010.

    CHEN Peng, ZHOU Ying, DONG Fan. Advances in regulation strategies for electronic structure and performance of two-dimensional photocatalytic materials[J]. Acta Phys-Chim Sin,2021,37(8):2010010.
    [23] WANG Z D, CHU Z, DONG C W, WANG Z, YAO S Y, GAO H, LIU Z Y, LIU Y, YANG B, ZHANG H. Ultrathin BiOX (X=Cl, Br, I) nanosheets with exposed {001} facets for photocatalysis[J]. ACS Appl Nano Mater,2020,3(2):1981−1991. doi: 10.1021/acsanm.0c00022
    [24] 周文君, 沈伯雄, 张芹, 王欣怡, 卢凤菊. 负载CuO的Ti3+/TiO2催化剂制备及其光催化甲苯降解性能[J]. 燃料化学学报,2019,47(2):249−256. doi: 10.3969/j.issn.0253-2409.2019.02.015

    ZHOU Wen-jun, SHEN Bo-xiong, ZHANG Qin, WANG Xin-yi, LU Feng-ju. Preparation of the Ti3+/TiO2 supported CuO catalyst and its photocatalytic performance in the degradation of toluene[J]. J Fuel Chem Technol,2019,47(2):249−256. doi: 10.3969/j.issn.0253-2409.2019.02.015
    [25] LIU J, KE J, LI Y, LIU B J, WANG L D, XIAO H N, WANG S B. Co3O4 quantum dots/TiO2 nanobelt hybrids for highly efficient photocatalytic overall water splitting[J]. Appl Catal B: Environ,2018,236:396−403. doi: 10.1016/j.apcatb.2018.05.042
    [26] YANG J, WEN Z H, SHEN X X, DAI J, LI Y, LI Y J. A comparative study on the photocatalytic behavior of graphene-TiO2 nanostructures: Effect of TiO2 dimensionality on interfacial charge transfer[J]. Chem Eng J,2018,334:907−921. doi: 10.1016/j.cej.2017.10.088
    [27] XIE J J, JIN R X, LI A, BI Y P, RUAN Q S, DENG Y C, ZHANG Y J, YAO S Y, SANKAR G, MA D, TANG J W. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species[J]. Nat Catal,2018,1(11):889−896. doi: 10.1038/s41929-018-0170-x
    [28] MA M, ZHANG K, LI P, JUNG M S, JEONG M J, PARK J H. Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation[J]. Angew Chem Int Ed,2016,55(39):11819−11823. doi: 10.1002/anie.201605247
    [29] LIU D N, CHEN D Y, LI N J, XU Q F, LI H, HE J H, LU J M. ZIF-67-derived 3D hollow mesoporous crystalline Co3O4 wrapped by 2D g-C3N4 nanosheets for photocatalytic removal of nitric oxide[J]. Small,2019,15(31):1902291. doi: 10.1002/smll.201902291
    [30] ZHANG H Y, GUO C F, REN J B, NING J Q, ZHONG Y J, ZHANG Z Y, HU Y. Beyond CoOx: A versatile amorphous cobalt species as an efficient cocatalyst for visible-light-driven photocatalytic water oxidation[J]. Chem Commun,2019,55(93):14050−14053. doi: 10.1039/C9CC07835E
    [31] PARK J, YOON H, CHOI S, SON J. Nanoscaffold WO3 by kinetically controlled polymorphism[J]. Cryst Growth Des,2019,19(1):479−486. doi: 10.1021/acs.cgd.8b01551
    [32] LIU H, ZHANG J, AO D. Construction of heterostructured ZnIn2S4@NH2-MIL-125(Ti) nanocomposites for visible-light-driven H2 production[J]. Appl Catal B: Environ,2018,221:433−442. doi: 10.1016/j.apcatb.2017.09.043
    [33] YUAN J L, WEN J Q, GAO Q Z, CHEN S C, LI J M, LI X, FANG Y P. Amorphous Co3O4 modified CdS nanorods with enhanced visible-light photocatalytic H2-production activity[J]. Dalton Trans,2015,44(4):1680−1689. doi: 10.1039/C4DT03197K
    [34] MURCIA-LÓPEZ S, VILLA K, ANDREU T, MORANTE J R. Partial oxidation of methane to methanol using bismuth-based photocatalysts[J]. ACS Catal,2014,4:3013−3019. doi: 10.1021/cs500821r
    [35] ZENG Y, LUO X, LI F, HUANG A H, WU H M, XU G Q, WANG S L. Noble metal-free FeOOH/Li0.1WO3 core-shell nanorods for selective oxidation of methane to methanol with Visible-NIR light[J]. Environ Sci Technol,2021,55(11):7711−7720. doi: 10.1021/acs.est.1c01152
    [36] MURCIA-LÓPEZ S, BACARIZA M C, VILLA K, LOPES J M, HENRIQUES C, MORANTE J R, ANDREU T. Controlled photocatalytic oxidation of methane to methanol through surface modification of beta zeolites[J]. ACS Catal,2017,7:2878−2885. doi: 10.1021/acscatal.6b03535
    [37] LI Y, LI J, ZHANG G K, WANG K, WU X Y. Selective photocatalytic oxidation of low concentration methane over graphitic carbon nitride-decorated tungsten bronze cesium[J]. ACS Sustainable Chem Eng,2019,7(4):4382−4389. doi: 10.1021/acssuschemeng.8b06270
    [38] CHEN Z Q, CHEN P F, XING P X, HU X, LIN H J, ZHAO L H, WU Y, HE Y M. Rapid fabrication of KTa0.75Nb0.25/g-C3N4 composite via microwave heating for efficient photocatalytic H2 evolution[J]. Fuel,2019,241:1−11. doi: 10.1016/j.fuel.2018.12.011
    [39] 成荣敏, 徐虹, 单瑞平, 詹从红. La掺杂钛酸钙光催化剂在可见光下分解水制氢的影响因素[J]. 高等学校化学学报,2020,41(6):1345−1351. doi: 10.7503/cjcu20190644

    CHENG Rong-min, XU Hong, SHAN Rui-ping, ZHAN Cong-hong. Influential factors of La-doped Calcium Titanate for photocatalytic H2 evolution under visible light[J]. Chem J Chin Univ,2020,41(6):1345−1351. doi: 10.7503/cjcu20190644
    [40] ZHAO Z W, FAN J Y, DENG X Y, LIU J. One-step synthesis of phosphorus-doped g-C3N4/Co3O4 quantum dots from vitamin B12 with enhanced visible-light photocatalytic activity for metronidazole degradation[J]. Chem Eng J,2019,360:1517−1529. doi: 10.1016/j.cej.2018.10.239
    [41] TANG C N, LIU E Z, WAN J, HU X Y, FAN J. Co3O4 nanoparticles decorated Ag3PO4 tetrapods as an efficient visible-light-driven heterojunction photocatalyst[J]. Appl Catal B: Environ,2016,181:707−715. doi: 10.1016/j.apcatb.2015.08.045
    [42] HE W W, KIM H K, WARNER W G, MELKA D, CALLAHAN J H, YIN J J. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity[J]. J Am Chem Soc,2014,136:750−757. doi: 10.1021/ja410800y
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  870
  • HTML全文浏览量:  307
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-18
  • 修回日期:  2021-09-27
  • 网络出版日期:  2021-11-25
  • 刊出日期:  2022-04-26

目录

    /

    返回文章
    返回