留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型木质素气化动力学及产物析出特性

刘素敏 杨海平 胡俊豪 邹俊 陈汉平 王晨光

刘素敏, 杨海平, 胡俊豪, 邹俊, 陈汉平, 王晨光. 典型木质素气化动力学及产物析出特性[J]. 燃料化学学报(中英文), 2022, 50(4): 428-435. doi: 10.19906/j.cnki.JFCT.2021087
引用本文: 刘素敏, 杨海平, 胡俊豪, 邹俊, 陈汉平, 王晨光. 典型木质素气化动力学及产物析出特性[J]. 燃料化学学报(中英文), 2022, 50(4): 428-435. doi: 10.19906/j.cnki.JFCT.2021087
LIU Su-min, YANG Hai-ping, HU Jun-hao, ZOU Jun, CHEN Han-ping, WANG Chen-guang. Study on gasification kinetics and product characteristics of typical lignin[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 428-435. doi: 10.19906/j.cnki.JFCT.2021087
Citation: LIU Su-min, YANG Hai-ping, HU Jun-hao, ZOU Jun, CHEN Han-ping, WANG Chen-guang. Study on gasification kinetics and product characteristics of typical lignin[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 428-435. doi: 10.19906/j.cnki.JFCT.2021087

典型木质素气化动力学及产物析出特性

doi: 10.19906/j.cnki.JFCT.2021087
基金项目: 国家重点研发计划(2018YFB1501403)资助
详细信息
    通讯作者:

    E-mail: yhping2002@163.com

  • 中图分类号: TK6

Study on gasification kinetics and product characteristics of typical lignin

Funds: The project was supported by the National Key Research and Development Program of China(2018YFB1501403)
  • 摘要: 选用四种典型木质素:碱木质素、木质素磺酸盐、水解木质素、G型木质素,分别在热重分析仪和固定床台架上对其气化失重特性、动力学机理及产物析出特性进行研究,以揭示木质素来源对其气化特性的影响。结果表明,均相模型对气化反应过程拟合度较好。碱木质素热解活性最高,最先发生热解,且热解活化能最低;但其热解焦结构较致密,气化反应性较差;G型木质素和碱木质素有相似的气化特性;木质素磺酸盐和水解木质素在热解阶段有两段失重过程,其焦炭气化反应性均较高。对于气化产物特性,气化气中H2和CO为主要气体产物。碱木质素气化氢气产率高达55 mmol/g,碳转化率最高(87%),残余焦炭最少。而水解木质素和G型木质素气体产率较少,液体焦油和固体残渣相对较多,这主要与木质素中无机矿物质含量和组成有关。
  • FIG. 1464.  FIG. 1464.

    FIG. 1464.  FIG. 1464.

    图  1  木质素气化试验装置示意图

    Figure  1  Schematic diagram of gasification of lignin

    图  2  木质素样品的红外光谱谱图

    Figure  2  FT-IR spectra of lignin samples

    图  3  木质素水蒸气气化失重特性曲线(TG和DTG)

    Figure  3  TG and DTG curves of lignin gasification

    图  4  木质素热解炭峰强比值特性(700 ℃)

    Figure  4  Band ratios for lignin chars from the pyrolysis (700 ℃)

    图  5  碱木质素气化动力学拟合图

    Figure  5  Plots of ln[g(x)/T2] against 1/T that gave the highest correlation coefficient values of AL

    图  6  木质素气化产物分布特性

    Figure  6  Gasification products characteristics of lignin

    表  1  动力学模型函数的g(x)表达式

    Table  1  Expression of g(x) for the kinetic model functions

    ModelSymbolg(x)
    HMO1−ln (1−x)
    SCMR21 − (1−x)1/2
    R31 − (1−x)1/3
    下载: 导出CSV

    表  2  木质素的工业分析、元素分析和低位热值

    Table  2  Proximate, ultimate and LHV analyses of lignin

    SampleProximate analysis wd/%Ultimate analysis wd/%QLHV/(MJ·kg−1)
    FCVACHNSOa
    AL2.5444.9152.5553.494.540.112.4939.3721.36
    LS16.7960.8022.4248.684.330.354.2542.3919.64
    HL29.9058.4211.6943.183.440.878.6143.9012.88
    GL29.0370.550.4265.225.320.041.6927.7426.66
    note:FC-fixed carbon; V-volatile; A-ash; d-dry basis; a: calculated by difference
    下载: 导出CSV

    表  3  木质素无机矿物质灰组成特性

    Table  3  Inorganic composition of lignin samples (%)

    SampleNa2OMgOAl2O3SiO2P2O5SO3K2OCaOMnOFe2O3
    AL29.895.750.990.600.7861.050.270.620.010.04
    LS8.151.051.7748.900.6233.675.090.270.010.47
    HL3.403.205.9231.162.2827.468.804.270.077.55
    下载: 导出CSV

    表  4  木质素气化动力学参数

    Table  4  Gasification kinetic parameters of lignin

    SamplePyrolysisGasification
    E/(kJ·mol−1)A/min−1E/(kJ·mol−1)A/min−1
    AL40.334.20 × 102175.086.40 × 108
    LS64.694.86 × 104698.657.52 × 1032
    HL68.923.48 × 104200.849.92 × 108
    GL62.153.52 × 104334.141.48 × 1015
    note:E- activation energy; A-pre-exponential factor
    下载: 导出CSV
  • [1] KLEMM D, HEUBLEIN B, FINK H, BOHN A. Cellulose: Fascinating biopolymer and sustainable raw material[J]. Angew Chem Int Ed,2005,44(22):3358−3393. doi: 10.1002/anie.200460587
    [2] 李忠正. 可再生生物质资源——木质素的研究[J]. 南京林业大学学报(自然科学版),2012,36(1):1−7.

    LI Zhong-zheng. Research on renewable biomass resource—lignin[J]. J Nanjing Univ,2012,36(1):1−7.
    [3] SOOMRO A, CHEN S, MA S, XU C, SUN Z, XIANG W. Elucidation of syngas composition from catalytic steam gasification of lignin, cellulose, actual and simulated biomasses[J]. Biomass Bioenergy,2018,115:210−222. doi: 10.1016/j.biombioe.2018.05.002
    [4] WU C, WANG Z, HUANG J, WILLIAMS P T. Pyrolysis/gasification of cellulose, hemicellulose and lignin for hydrogen production in the presence of various nickel-based catalysts[J]. Fuel,2013,106:697−706. doi: 10.1016/j.fuel.2012.10.064
    [5] 郭大亮. 麦草碱法制浆黑液热解气化特性与产物形成规律研究[D]. 广州: 华南理工大学, 2012.

    GUO Da-liang. Research on pyrolysis and gasification characteristics of wheat strawsoda pulping black liquor and formation rules of products[D]. Guangzhou: South China University of Technology, 2012.
    [6] 陈磊. 木质素及其模型物热解机理研究[D]. 武汉: 华中科技大学, 2015.

    CHEN Lei. Study on pyrolysis mechanism of lignin and its model compounds[D]. Wuhan: Huazhong University of Science and Technology, 2015.
    [7] CHUNFEI W, ZICHUN W, VALERIE D, JUN H, PAUL T W. Nickel-catalysed pyrolysis/gasification of biomass components[J]. J Anal Appl Pyrol,2013,99.
    [8] YANG H, DONG Z, LIU B, CHEN Y, GONG M, LI S, CHEN H. A new insight of lignin pyrolysis mechanism based on functional group evolutions of solid char[J]. Fuel,2021,288:119719.
    [9] 张斌, 武书彬, 阴秀丽, 吴创之, 邱泽晶, 马隆龙. 酸水解木质素的结构及热解产物分析[J]. 太阳能学报,2011,32(1):19−24.

    ZHANG Bin, WU Shu-bin, YIN Xiu-li, WU Chuang-zhi, QIU Ze-jing, MA Long-long. Analysis of structure and pyrolysis products of acid hydrolyzed lignin[J]. Acta Energ Sol Sin,2011,32(1):19−24.
    [10] 李计彪, 武书彬, 徐绍华. 木质素磺酸盐的化学结构与热解特性[J]. 林产化学与工业,2014,34(02):23−28.

    LI Ji-biao, WU Shu-bin, XU Shao-hua. Chemical structure and thermochemical property of lignin sulfonate[J]. Chem Ind Prod,2014,34(02):23−28.
    [11] 陈建行, 刘亮, 田红, 张航, 陈斌斌. β-O-4型木质素二聚体高温蒸汽气化机理的理论研究[J]. 材料导报,2015,29(14):156−161.

    CHEN Jian-xing, LIU Liang, TIAN Hong, ZHANG Hang, CHEN Bin-bin. Theoretical study on mechanism of high-temperature steam-assisted gasification of β-O-4 lignin dimer[J]. Mater Rep,2015,29(14):156−161.
    [12] 朱力. 铜渣催化气化木质素的基础研究[D]. 昆明: 昆明理工大学, 2015.

    ZHU Li. Basic research on catalytic gasification of lignin with copper slag[D]. Kunming: Kunming University of Science and Technology, 2015.
    [13] GUO D, WU S, LIU B, YIN X, YANG Q. Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification[J]. Appl Energ,2012,95:22−30. doi: 10.1016/j.apenergy.2012.01.042
    [14] CHEW J J, SOH M, SUNARSO J, YONG S, DOSHI V, BHATTACHARYA S. Isothermal kinetic study of CO2 gasification of torrefied oil palm biomass[J]. Biomass Bioenergy,2020,134:105487. doi: 10.1016/j.biombioe.2020.105487
    [15] EDREIS E M A, LUO G, LI A, XU C, YAO H. Synergistic effects and kinetics thermal behaviour of petroleum coke/biomass blends during H2O co-gasification[J]. Energ Convers Manage,2014,79:355−366. doi: 10.1016/j.enconman.2013.12.043
    [16] 江龙. 生物质热解气化过程中内在碱金属、碱土金属的迁移及催化特性研究[D]. 武汉: 华中科技大学, 2013.

    JIANG Long. Migration and catalytic characteristic of intrinsic AAEMs during pyrolysis and gasification process of biomass [D]. Wuhan: Huazhong University of Science and Technology, 2013.
    [17] 郭大亮, 王林芳, 郭惠萍, 陈梦薇, 薛国新, 武书彬. 结合态与无机态钠对木质素半焦气化特性的影响[J]. 农业机械学报,2017,48(03):332−337.

    GUO Da-liang, WANG Lin-fang, GUO Hui-ping, CHEN Meng-wei, XUE Guo-xin, WU Shu-bin. Influence of inorganic and organic bound Na on char gasification characteristics of lignin[J]. Trans Chin Soc Agric Mach,2017,48(03):332−337.
    [18] 胡俊豪. 煤与生物质混合热解/气化特性及交互作用研究[D]. 武汉: 华中科技大学, 2018.

    HU Jun-hao. Study on the co-pyrolysis/gasification characteristics of coal and biomass and the interactions [D]. Wuhan: Huazhong University of Science and Technology, 2018.
    [19] LI X, HAYASHI J, LI C. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel,2006,85(12/13):1700−1707. doi: 10.1016/j.fuel.2006.03.008
    [20] LAHIJANI P, ZAINAL Z A, MOHAMED A R, MOHAMMADI M. Co-gasification of tire and biomass for enhancement of tire-char reactivity in CO2 gasification process[J]. Bioresource Technol,2013,138:124−130. doi: 10.1016/j.biortech.2013.03.179
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  467
  • HTML全文浏览量:  274
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-31
  • 修回日期:  2021-10-09
  • 网络出版日期:  2021-10-28
  • 刊出日期:  2022-04-26

目录

    /

    返回文章
    返回