留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤基型焦牺牲阳极强化水电解制氢实验研究

李娜 李哲函 李光 郑晨旭 范剑明 刘全生 周兴

李娜, 李哲函, 李光, 郑晨旭, 范剑明, 刘全生, 周兴. 煤基型焦牺牲阳极强化水电解制氢实验研究[J]. 燃料化学学报(中英文), 2022, 50(7): 912-919. doi: 10.19906/j.cnki.JFCT.2021090
引用本文: 李娜, 李哲函, 李光, 郑晨旭, 范剑明, 刘全生, 周兴. 煤基型焦牺牲阳极强化水电解制氢实验研究[J]. 燃料化学学报(中英文), 2022, 50(7): 912-919. doi: 10.19906/j.cnki.JFCT.2021090
LI Na, LI Zhe-han, LI Guang, ZHENG Chen-xu, FAN Jian-ming, LIU Quan-sheng, ZHOU Xing. Hydrogen production from water electrolysis enhanced by coal-based formcoke sacrificial anode[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 912-919. doi: 10.19906/j.cnki.JFCT.2021090
Citation: LI Na, LI Zhe-han, LI Guang, ZHENG Chen-xu, FAN Jian-ming, LIU Quan-sheng, ZHOU Xing. Hydrogen production from water electrolysis enhanced by coal-based formcoke sacrificial anode[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 912-919. doi: 10.19906/j.cnki.JFCT.2021090

煤基型焦牺牲阳极强化水电解制氢实验研究

doi: 10.19906/j.cnki.JFCT.2021090
基金项目: 国家自然科学基金(21868021),鄂尔多斯科技计划(2021YY工119-49),河北省高等学校科学技术研究(QN2021090)和河北师范大学博士基金(L2021034)资助
详细信息
    通讯作者:

    E-mail: zhoux@hebtu.edu.cn

  • 中图分类号: TQ116.2+1

Hydrogen production from water electrolysis enhanced by coal-based formcoke sacrificial anode

Funds: The project was supported by the National Natural Science Foundation of China (21868021), the Ordos Science and Technology Project (2021YY-gong-119-49), the Science and Technology Project of Hebei Education Department (QN2021090), Science Foundation of Hebei Normal University (L2021034).
More Information
  • 摘要: 传统炭辅助电解水制氢技术将煤、生物质等碳源直接加入阳极室形成浆液,受炭颗粒、氧化基团和电极之间传递影响,反应速率慢,只有在低电流密度下才能实现电解制氢能耗的降低。以煤为碳源、碱活化生物质为黏结剂、石墨为导电颗粒,通过共成型和共热解工艺获得煤基型焦牺牲阳极,并用于炭辅助水电解制氢过程,可在高电流密度下(50 mA/cm2)显著提高炭辅助水电解制氢效率。电化学测试和阳极材料表征表明,煤基型焦牺牲阳极通过自身的牺牲(被氧化)强化阴极反应,进而实现水电解制氢电化学性能的提高。型焦牺牲阳极在1.23 V( vs. RHE)时,制氢电流密度是铂阳极的87倍,Tafel斜率降低了41%。煤基型焦阳极在50 mA/cm2电流密度下阴极产氢速率是铂阳极体系的2.47倍,但电极电位仅为铂阳极的85%。SEM、TGA、BET、FT-IR和XPS结果表明,电解后牺牲阳极自身被氧化,羧基类C=O键被氧化生成CO2,醚类C–O含量显著增加。研究成果为炭辅助电解水制氢技术提供了全新思路与参考。
  • FIG. 1690.  FIG. 1690.

    FIG. 1690.  FIG. 1690.

    图  1  XJYJ强化水电解制氢反应装置示意图

    Figure  1  Schematic diagram of XJYJ enhanced hydrolysis hydrogen production reactor

    RE: Reference electrode; WE: Working electrode; CE: Counter electrode; GC: Gas chromatograph; PEM: Nafion 117

    图  2  Pt-Pt、SM-Pt、XJYJ-Pt的LSV曲线(a)和10及50 mA/cm2对应的电位(b)

    Figure  2  LSV curves of Pt-Pt, SM-Pt and XJYJ-Pt systems (a) and the over potential at 10 and 50 mA/cm2 (b)

    图  3  XJYJ-Pt和Pt-Pt体系恒电流电解特性

    Figure  3  Constant current electrolysis characteristics of XJYJ-Pt and Pt-Pt systems

    图  4  EIS特性(Pt-Pt、SM-Pt和XJYJ-Pt体系的Nyquist曲线(a)及Rs、Rct值(b))

    Figure  4  EIS properties(Nyquist curves for Pt-Pt, SM-Pt and XJYJ-Pt system (a) and Rs, Rct value (b))

    图  5  XJYJ反应前(a)后(b)的SEM照片

    Figure  5  SEM images of XJYJ before electrolysis (a) and after electrolysis (b)

    图  6  反应前后XJYJ的TG-DTG曲线

    Figure  6  TG-DTG curves of XJYJ before and after the reaction

    图  7  型焦阳极反应前后O 1s 的XPS谱图

    Figure  7  XPS O 1s spectra of formcoke before and after anode reaction

    图  8  XJYJ反应前后的FT-IR谱图

    Figure  8  FT-IR spectra before and after XJYJ reaction

    表  1  样品的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of samples

    SampleProximate analysis wad /%Ultimate analysis wdaf /%
    MAVFCCHNO*S
    HS5.39.413.272.172.283.410.8421.821.65
    HS+3.93.330.961.973.583.460.9420.291.73
    JG2.045.7675.8016.4044.765.830.8148.440.16
    *:by difference
    下载: 导出CSV

    表  2  阳极和阴极气体产物生成量

    Table  2  Gas production of anode and cathode

    SampleGas production of
    anode / mL
    Gas production of
    cathode / mL
    O2CO2H2
    Pt-Pt4.95010.20
    SM-Pt14.8328.77
    XJYJ-Pt7.62216.58
    −: not detected
    下载: 导出CSV

    表  3  型焦阳极样品的孔结构参数

    Table  3  Porosity characteristics of formcoke anode sample

    SampleSurface area/
    (m2·g−1)
    Pore volume/
    (cm3·g−1)
    Average pore
    diameter d/nm
    Before reaction22.100.027102.255
    After reaction17.670.043103.420
    下载: 导出CSV

    表  4  反应前后氧形态及相对含量

    Table  4  Oxygen morphology and relative content before and after reaction

    SampleRelative content /%
    C=O(531.3)C–O(532.2)
    Before reaction31.9568.05
    After reaction13.0786.93
    下载: 导出CSV
  • [1] WANG M Y, WANG Z, GUO Z C. Water electrolysis enhanced by super gravity field for hydrogen production[J]. Int J Hydrogen Energy,2010,35(8):3198−3205. doi: 10.1016/j.ijhydene.2010.01.128
    [2] CHEN S, ZHOU W, DING Y N, ZHAO G B, GAO J H. Energy-saving cathodic hydrogen production enabled by anodic oxidation of aqueous sodium sulfite solutions[J]. Energy Fuels,2020,34(7):9058−9063. doi: 10.1021/acs.energyfuels.0c01589
    [3] SONG X P, GUO Z C. Technologies for direct production of flexible H2/CO synthesis gas[J]. Energy Convers Manage,2006,47(5):560−569. doi: 10.1016/j.enconman.2005.05.012
    [4] SONG X P, GUO Z C. A new process for synthesis gas by co-gasifying coal and natural gas[J]. Fuel,2005,84(5):525−531. doi: 10.1016/j.fuel.2004.10.012
    [5] OUYANG Z B, GUO Z C, DUAN D P, SONG X P, YU X P. Experimental study of coal gasification coupling with natural gas autothermal re-forming for synthesis gas production[J]. Ind Eng Chem Res,2005,44(2):279−284. doi: 10.1021/ie049711m
    [6] HIRSCH R L, GALLAGHER J E, LESSARD R R, WESSLHOFT R D. Catalytic coal gasification: An emerging technology[J]. Science,1982,215(4529):121−127. doi: 10.1126/science.215.4529.121
    [7] WENTORF R H, HANNEMAN R E. Thermochemical hydrogen generation[J]. Science,1974,185(4148):311−319. doi: 10.1126/science.185.4148.311
    [8] ATCHUDAN R, IMMANUEL EDISON T N J, PERUMAL S, VINODH R, MUTHUCHAMY N, LEE Y R. One-pot synthesis of Fe3O4@graphite sheets as electrocatalyst for water electrolysis[J]. Fuel,2020,277:118235. doi: 10.1016/j.fuel.2020.118235
    [9] LONIS F, TOLA V, CAU G. Assessment of integrated energy systems for the production and use of renewable methanol by water electrolysis and CO2 hydrogenation[J]. Fuel,2021,285:119160. doi: 10.1016/j.fuel.2020.119160
    [10] SHAH J, JAIN S, SHUKLA A, GUPTA R, KOTNALA R K. A facile non-photocatalytic technique for hydrogen gas production by hydroelectric cell[J]. Int J Hydrogen Energy,2017,42(52):30584−30590. doi: 10.1016/j.ijhydene.2017.10.105
    [11] GE L, GONG X Z, WANG Z, ZHAO L X, WANG Y H, WANG M Y. Insight of anode reaction for CWS (coal water slurry) electrolysis for hydrogen production[J]. Energy,2016,96:372−382. doi: 10.1016/j.energy.2015.12.077
    [12] GONG X Z, WANG M Y, LIU Y, WANG Z, GUO Z C. Variation with time of cell voltage for coal slurry electrolysis in sulfuric acid[J]. Energy,2014,65:233−239. doi: 10.1016/j.energy.2013.11.083
    [13] GONG X Z, WANG M Y, WANG Z, GUO Z C. Roles of inherent mineral matters for lignite water slurry electrolysis in H2SO4 system[J]. Energy Convers Manage,2013,75:431−437. doi: 10.1016/j.enconman.2013.07.004
    [14] DU X, LIU W, ZHANG Z, MULYADI A, BRITTAIN A, GONG J, DENG Y L. Low-energy catalytic electrolysis for simultaneous hydrogen evolution and lignin depolymerization[J]. ChemSusChem,2017,10(5):847−854. doi: 10.1002/cssc.201601685
    [15] CHEN S, ZHOU W, DING Y N, ZHAO G B, GAO J H. Communication-oxalic acid assisted water electrolysis for less energy-intensive electrochemical hydrogen production[J]. J Electrochem Soc,2020,167(13):134503. doi: 10.1149/1945-7111/abb70a
    [16] COUGHLIN R W, FAROOQUE M. Hydrogen production from coal, water and electrons[J]. Nature,1979,279(5711):301−303. doi: 10.1038/279301a0
    [17] YING Z, GENG Z, ZHENG X Y, DOU B L, CUI G M. Enhancing biochar oxidation reaction with the mediator of Fe2+/Fe3+ or NO2-/NO3-for efficient hydrogen production through biochar-assisted water electrolysis[J]. Energy Convers Manage,2021,244:114523. doi: 10.1016/j.enconman.2021.114523
    [18] 寇凯凯. 煤辅助电解水制氢中矿物质及羧基官能团的影响机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    KOU Kai-kai. Mechanism study of minerals and carboxyl functional groups effects on coal assisted water electrolysis[D]. Harbin: Harbin Institute of Technology, 2019.
    [19] CHEN S, ZHOU W, DING Y N, ZHAO G B, GAO J H. Coal-assisted water electrolysis for hydrogen production: evolution of carbon structure in different-rank coal[J]. Energy Fuels,2021,35(4):3512−3520. doi: 10.1021/acs.energyfuels.0c04122
    [20] OKADA G, GURUSWAMY V, BOCKRIS J O M. On the electrolysis of coal slurries[J]. J Electrochem Soc,1981,128(10):2097−2102. doi: 10.1149/1.2127197
    [21] YIN R H, ZHAO Y G, LU S Y, WANG H M, CAO W M, FAN Q B. Electrocatalytic oxidation of coal on Ti-supported metal oxides coupled with liquid catalysts for H2 production[J]. Electrochim Acta,2009,55(1):46−51. doi: 10.1016/j.electacta.2009.07.090
    [22] ZHANG T, ZHANG J T, WANG Z, LIU J H, QIAN G Y, WANG D, GONG X Z. Review of electrochemical oxidation desulfurization for fuels and minerals[J]. Fuel,2021,305:121562. doi: 10.1016/j.fuel.2021.121562
    [23] JU H K, GIDDEY S, BADWAL S P S. Role of iron species as mediator in a PEM based carbon-water co-electrolysis for cost-effective hydrogen production[J]. Int J Hydrogen Energy,2018,43(19):9144−9152. doi: 10.1016/j.ijhydene.2018.03.195
    [24] ZHOU Y J, HU Y N, GONG X Z, WANG Z, ZHANG S, WANG M Y. Intensified hydrogen production and desulfurization at elevated temperature and pressure during coal electrolysis[J]. Electrochim Acta,2018,284:560−568. doi: 10.1016/j.electacta.2018.07.204
    [25] 陈娟, 高启帅, 刘喆, 闫龙, 李健, 马向荣, 张智芳. 改性花生壳基型煤型焦微观结构探究[J]. 当代化工,2021,50(2):266−269.

    CHEN Juan, GAO Qi-shuai, LIU Zhe, YAN Long, LI Jian, MA Xiang-rong, ZHANG Zhi-fang. Study on microstructure of modified peanut shell based briquette and formed coke[J]. Contemp Chem Ind,2021,50(2):266−269.
    [26] 张世强. 玉米秸秆基高强度生物炭的成型制备及理化特性研究[D]. 吉林: 东北电力大学, 2021.

    ZHANG Shi-qiang. Research on the preparation and physical and chemical properties of corn stalk-derived high strength biochar[D]. Jilin: Northeast Electric Power University, 2021.
    [27] 王宁. 电石渣改性蒙古烟煤水气化性能研究[D]. 内蒙古: 内蒙古工业大学, 2020.

    WANG Ning. Study on water gasification performance of Mongolian bituminous coal modified by carbide slag[D]. Inner Mongolia: Inner Mongolia University of Technology, 2020.
    [28] SHI L, LIU Q Y, GUO X J, WU W Z, LIU Z Y. Pyrolysis behavior and bonding information of coal—A TGA study[J]. Fuel Process Technol,2013,108:125−132. doi: 10.1016/j.fuproc.2012.06.023
    [29] 谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002: 116–130.

    XIE Ke-chang. Coal Structure and Its Reactivity[M]. Beijing: Science Press, 2002: 116–130.
    [30] VAN HEEK K H, HODEK W. Structure and pyrolysis behaviour of different coals and relevant model substances[J]. Fuel,1994,73(6):886−896. doi: 10.1016/0016-2361(94)90283-6
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  169
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-28
  • 修回日期:  2021-11-02
  • 录用日期:  2021-11-03
  • 网络出版日期:  2022-01-20
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回