留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化锌催化木质素选择性解聚制备对香豆酸甲酯

黄哲超 吴远昊 吕凯奇 饶一楠 龙金星

黄哲超, 吴远昊, 吕凯奇, 饶一楠, 龙金星. 氧化锌催化木质素选择性解聚制备对香豆酸甲酯[J]. 燃料化学学报(中英文), 2022, 50(6): 757-767. doi: 10.19906/j.cnki.JFCT.2021092
引用本文: 黄哲超, 吴远昊, 吕凯奇, 饶一楠, 龙金星. 氧化锌催化木质素选择性解聚制备对香豆酸甲酯[J]. 燃料化学学报(中英文), 2022, 50(6): 757-767. doi: 10.19906/j.cnki.JFCT.2021092
HUANG Zhe-chao, WU Yuan-hao, LÜ Kai-qi, RAO Yi-nan, LONG Jin-xing. Selective depolymerization of lignin to methyl p-coumarate catalyzed by metal oxides[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 757-767. doi: 10.19906/j.cnki.JFCT.2021092
Citation: HUANG Zhe-chao, WU Yuan-hao, LÜ Kai-qi, RAO Yi-nan, LONG Jin-xing. Selective depolymerization of lignin to methyl p-coumarate catalyzed by metal oxides[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 757-767. doi: 10.19906/j.cnki.JFCT.2021092

氧化锌催化木质素选择性解聚制备对香豆酸甲酯

doi: 10.19906/j.cnki.JFCT.2021092
基金项目: 国家自然科学基金(21878111,22178129)资助
详细信息
    作者简介:

    黄哲超(1996—),男,硕士研究生,201920122577@mail.scut.edu.cn

    通讯作者:

    E-mail: cejxlong@scut.edu.cn

  • 中图分类号: TQ016.8

Selective depolymerization of lignin to methyl p-coumarate catalyzed by metal oxides

Funds: The project was supported by the National Natural Science Foundation of China ((21878111,22178129).
  • 摘要: 木质素是自然界中含量最丰富的芳香族可再生碳资源,具有极高的利用价值。针对当前木质素解聚技术存在反应条件苛刻、产物选择性低等难题,构建了一种廉价的金属氧化物催化剂体系,研究了草本木质素选择性解聚制备对香豆酸甲酯的性能。考察了不同金属氧化物、反应温度、反应时间以及溶剂等因素对于对香豆酸酯收率和选择性的影响。研究结果表明,金属氧化物ZnO对于草本木质素选择性解聚制备对香豆酸甲酯的过程具有最佳的催化活性。在优化的反应条件下,可获得9.8%的对香豆酸甲酯收率和61.6%的选择性;通过对木质素解聚产物的分析并结合反应前后木质素的傅里叶红外光谱(FT-IR)和二维核磁(2D HSQC NMR)表征结果发现,木质素分子中H结构单元的选择性断裂是其催化解聚过程中对香豆酸甲酯收率和选择性高的主要原因。
  • FIG. 1596.  FIG. 1596.

    FIG. 1596.  FIG. 1596.

    图  1  不同制备方法获得的ZnO催化剂表征

    Figure  1  Characterization of different ZnO catalysts

    (a) XRD patterns, (b) physical absorption-desorption profile, (c) SEM image of commercial ZnO and (d) SEM image of as-prepared ZnO

    图  2  催化剂用量对木质素解聚的影响

    Figure  2  Effect of catalyst dosage on the catalytic depolymerization of lignin

    Reaction conditions: 0.1 g lignin, 15 mL CH3OH, 1.0 MPa N2, 165 ℃, 8 h

    图  3  反应温度对木质素解聚的影响

    Figure  3  Effect of reaction temperature on the catalytic depolymerization of lignin

    Reaction conditions: 0.1 g lignin, 0.05 g ZnO, 15 mL CH3OH, 1.0 MPa N2, 8 h

    图  4  反应时间对木质素解聚的影响

    Figure  4  Effect of reaction time on the catalytic depolymerization of lignin

    Reaction conditions: 0.1 g lignin, 0.05 g ZnO, 15 mL CH3OH, 1.0 MPa N2, 165 ℃

    图  5  不同木质素原料的影响

    Figure  5  Conversion of lignin from different biomass

    Reaction conditions: 0.1 g lignin, 0.05 g ZnO, 15 mL CH3OH, 1.0 MPa N2, 165 ℃, 8 h

    图  6  木质素选择性解聚挥发性产物的GC-MS谱图

    Figure  6  GC-MS profile of volatile products from the lignin depolymerization

    图  7  解聚反应前后木质素的FT-IR谱图

    Figure  7  FT-IR spectra of raw lignin and recovered lignin

    图  8  木质素的2D HSQC NMR谱图

    Figure  8  2D HSQC NMR spectra of raw lignin and recovered lignin

    表  1  不同金属氧化物催化木质素选择性转化[a]

    Table  1  Selective conversion of lignin over different metal oxide catalysts

    CatalystConversion /%Yield of volatile products w/%Selectivity of MPC /%
    totalMPC4-hydroxystyreneother
    None 35.7 7.36 0.00 1.19 6.17 0
    Nb2O5 42.5 8.64 0.00 4.37 4.28 0
    ZrO2 43.2 8.43 0.00 3.10 5.33 0
    CuO 45.1 7.98 1.38 4.33 2.27 17.3
    TiO2 47.8 9.00 1.56 2.70 4.73 17.3
    Fe2O3 48.3 9.13 1.77 2.89 4.48 19.4
    CeO2 49.1 10.26 3.27 1.64 5.35 31.9
    Mn2O3 48.9 10.77 4.95 2.33 3.49 46
    CaO 51.2 10.84 8.01 0.84 1.99 73.9
    ZnO 53.3 15.90 9.80 0.57 5.53 61.6
    ZnO[b] 50.3 11.94 5.87 0.51 5.56 49.2
    [a] reaction conditions: 0.1 g lignin, 0.05 g catalyst, 15 mL CH3OH, 1.0 MPa N2, 165℃, 8 h
    [b] commercial ZnO
    下载: 导出CSV

    表  2  不同制备方法获得的ZnO催化剂的比表面积、孔径和孔容

    Table  2  Surface area, pore diameter and pore volume of different ZnO

    SampleSBET /(m2·g−1)dp[a] /nmvp[b] /(cm3·g−1)
    As-prepared ZnO 16.5 4.93 0.04
    Commercial ZnO 13.2 4.67 0.03
    [a] average pore diameter determined by the BJH analysis
    [b] total pore volume determined by the BJH analysis
    下载: 导出CSV

    表  3  溶剂效应对木质素解聚的影响

    Table  3  Solvent effect for selective lignin depolymerization

    SolventProductYield of volatile products w/%Selectivity of p-HCE /%
    totalp-HCEother
    Methanol methyl p-coumarate 15.9 9.8 6.1 61.6
    Ethanol ethyl p-coumarate 12.4 4.0 8.4 32.6
    n-propanol propyl p-coumarate 11.4 3.9 7.5 34.0
    n-butanol butyl p-coumarate 8.3 2.3 6 28.0
    Reaction conditions: 0.1 g lignin, 0.05 g ZnO, 15 mL solvent, 1.0 MPa N2, 165 ℃, 8 h; p-HCE represented the ester p-coumarate
    下载: 导出CSV

    表  4  木质素各类结构在2D HSQC NMR图谱中的归属

    Table  4  Assignment of main lignin 13C-1H cross-signals in the 2D HSQC NMR spectra

    LableδC/δHAssignments
    Methoxyl55.6/3.7C–H in methoxyls
    Aα72.3/4.9Cα–Hα in β–O–4 units (A)
    Aβ(H/G)80.3/4.5Cβ–Hβ in β–O–4 substructures linked to H/G units (A)
    Aβ(S)85.5/4.2Cβ–Hβ in β–O–4 substructures linked to S units (A)
    Aγ60.5/3.6Cγ–Hγ in β–O–4 substructures (A)
    A’(γ-pCA)63.2/4.4Cγ–Hγ in γ-pCA of β–O–4 (A)
    Bα87.4/5.5Cα–Hα in phenylcoumaran substructures (B)
    Bβ51.2/3.9Cβ–Hβ in phenylcoumaran substructures (B)
    Bγ62.3/3.8Cγ–Hγ in phenylcoumaran substructures (B)
    Cα83.6/5.0Cα–Hα in resinol substructures (C)
    Cβ53.5/3.5Cβ–Hβ in resinol substructures (C)
    Cγ70.3/4.1Cγ–Hγ in resinol substructures (C)
    H2/6128.4/7.2C2,6–H2,6 in H units (H)
    G2111.6/7.0C2–H2 in guaiacyl units (G)
    G5114.9/6.6C5–H5 in guaiacyl units (G)
    G6120.2/6.8C6–H6 in guaiacyl units (G)
    S2,6104.2/6.7C2,6–H2,6 in syringyl units (S)
    S’2,6106.9/7.4C2,6–H2,6 in oxidized S units (S′)
    pCA2/6130.7/7.5C2,6–H2,6 in p-coumarate (pCA)
    pCA3/5116.2/6.9C3,5–H3,5 in p-coumarate (pCA)
    pCA7145.3/7.5C7–H7 in p-coumarate (pCA)
    pCA8114.3/6.3C8–H8 in p-coumarate (pCA)
    FA2111.6/7.4C2–H2 in ferulate (FA)
    FA6123.2/7.2C6–H6 in ferulate (FA)
    FA7145.0/7.4C7–H7 in ferulate (FA)
    下载: 导出CSV
  • [1] ZHANG C, WANG F. Catalytic lignin depolymerization to aromatic chemicals[J]. Acc Chem Res,2020,53(2):470−484. doi: 10.1021/acs.accounts.9b00573
    [2] SUN Z H, FRIDRICH B, DE SANTI A, ELANGOVAN S, BARTA K. Bright side of lignin depolymerization: Toward new platform chemicals[J]. Chem Rev,2018,118(2):614−678. doi: 10.1021/acs.chemrev.7b00588
    [3] SCHUTYSER W, RENDERS T, VAN D B S, KOELEWIJN S F, BECKHAM G T, SELS B F. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading[J]. Chem Soc Rev,2018,47(3):852−908. doi: 10.1039/C7CS00566K
    [4] KUMAR A, ANUSHREE, KUMAR J, BHASKAR T. Utilization of lignin: A sustainable and eco-friendly approach[J]. J Energy Inst,2020,93(1):235−271. doi: 10.1016/j.joei.2019.03.005
    [5] SIVAGURUNATHAN P, RAJ T, MOHANTA C S, SEMWAL S, SATLEWAL A, GUPTA R P, PURI S K, RAMAKUMAR S S V, KUMAR R. 2G waste lignin to fuel and high value-added chemicals: Approaches, challenges and future outlook for sustainable development[J]. Chemosphere (Oxford),2021,268:129326. doi: 10.1016/j.chemosphere.2020.129326
    [6] LI H, ZHENG X, ZHANG H, LI X H, LONG J X. Selective cleavage of ester linkages in lignin catalyzed by La-doped Ni/MgO[J]. ACS Sustainable Chem Eng,2020,8(41):15685−15695. doi: 10.1021/acssuschemeng.0c05360
    [7] ANDERSON E M, KATAHIRA R, REED M, RESCH M G, KARP E M, BECKHAM G T, ROMAN LESHKOV Y. Reductive catalytic fractionation of corn stover lignin[J]. ACS Sustainable Chem Eng,2016,4(12):6940−6950. doi: 10.1021/acssuschemeng.6b01858
    [8] LI C, ZHAO X, WANG A, GEORGE W H, ZHANG T. Catalytic transformation of lignin for the production of chemicalsand Fuels[J]. Chem Rev,2015,115(21):11559−11624. doi: 10.1021/acs.chemrev.5b00155
    [9] 李晓雪, 牛晓坡, 王庆法. 级孔Pt-Ni/ZSM-5对木质素衍生物加氢脱氧性能研究[J]. 化工学报,2021,72(5):2626−2637.

    LI Xiao-xue, NIU Xiao-po, WANG Qing-fa. Study on hydrodeoxygenation performance of hierarchical Pt-Ni/ZSM-5 for lignin derivatives[J]. CIESC J,2021,72(5):2626−2637.
    [10] PEI K, OU J, HUANG J, OU SHIYI. p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities[J]. J Sci Food Agric,2016,96(9):2952−2962. doi: 10.1002/jsfa.7578
    [11] ADISAKWATTANA S. Cinnamic acid and its derivatives: Mechanisms for prevention and management of diabetes and its complications[J]. Nutrients,2017,9(2):163−189. doi: 10.3390/nu9020163
    [12] 管西芹, 毛近隆, 唐迎雪, 王集会, 孙蓉. 对香豆酸的药理作用研究进展[J]. 中草药,2018,49(17):4162−4170. doi: 10.7501/j.issn.0253-2670.2018.17.030

    GUAN Xi-qing, MAO Jin-long, TANG Ying-xue, WANG Ji-hui, SUN Rong. Research progress on pharmacological effects of p-coumaric acid[J]. Chin Herb Med,2018,49(17):4162−4170. doi: 10.7501/j.issn.0253-2670.2018.17.030
    [13] 赵从飞, 鲍远志, 徐俊杰, 翁世兵, 柴多里. 微波辅助一锅煮法合成p-羟基肉桂酸[J]. 合肥工业大学学报(自然科学版),2016,9(10):1411−1415.

    ZHAO Cong-fei, BAO Yuan-zhi, XU Jun-jie, WEN Shi-bing, CHAI Duo-li. Microwave-assisted “one-pot” synthesis of p-hydroxycinnamic acid[J]. J Hefei Univ Technol: Nat Sci Ed,2016,9(10):1411−1415.
    [14] WANG S, GAO W, LI H, XIAO, L, SUN R, SONG G. Selective fragmentation of biorefinery corncob lignin into p-Hydroxycinnamic Esters with a supported zinc molybdate catalyst[J]. ChemSusChem,2018,11(13):2114−2123. doi: 10.1002/cssc.201800455
    [15] LI Z, CAI Z, ZENG Q, ZHANG T, FRANCE L J, SONG C H, ZHANG Y Q, HE H Y, JIANG L L, LONG, J X, LI X H. Selective catalytic tailoring of the H unit in herbaceous lignin for methyl p-hydroxycinnamate production over metal-based ionic liquids[J]. Green Chem,2018,20(16):3743−3752. doi: 10.1039/C8GC01252K
    [16] FENG S J, YUE B, WANG Y, YE L, HE H Y. Hydroxylation of benzene over V-HMS catalysts with the addition of Fe as the second metal component[J]. Acta Phys-Chim Sin,2011,27(12):2881−2886. doi: 10.3866/PKU.WHXB20112881
    [17] HOSSEINI A M, TUNGLER A, BAKOS V. Wet oxidation properties of process waste waters of fine chemical and pharmaceutical origin[J]. React Kinet, Mech Catal,2011,103(2):251−260. doi: 10.1007/s11144-011-0315-2
    [18] SONG S, JIANG S, RAO R, YANG H X, ZHANG A M. Bicomponent VO2-defects/MWCNT catalyst for hydroxylation of benzene to phenol: Promoter effect of defects on catalytic performance[J]. Appl Catal A: Gen,2011,401(1/2):215−219.
    [19] WEI L, MAO X, LIN A. PbO2-SnO2 composite anode with interconnected structure for the electrochemical incineration of phenol[J]. Russ J Electrochem,2011,47(12):1394−1398. doi: 10.1134/S1023193511090084
    [20] CHEN X, ZHAO W, WANG F, GAN F X. Preparation and characterization of vanadium(IV) oxide supported on SBA-15 and its catalytic performance in benzene hydroxylation to phenol using molecular oxygen[J]. J Nat Gas Chem,2012,21(5):481−487. doi: 10.1016/S1003-9953(11)60394-0
    [21] XU C, TANG S F, SUN X Y, SUN Y Y, LI G Z, QI J B, LI X Y, LI X B. Investigation on the cleavage of β-O-4 linkage in dimeric lignin model compound over nickel catalysts supported on ZnO-Al2O3 composite oxides with varying Zn/Al ratios[J]. Catal Today,2017,298:89−98. doi: 10.1016/j.cattod.2017.05.048
    [22] WU Z, ZHANG J, ZHAO X X, LI X, ZHANG Y, WANG F. Attapulgite-supported magnetic dual acid-base catalyst for the catalytic conversion of lignin to phenolic monomers[J]. J Chem Technol Biotechnol,2019,94(4):1269−1281. doi: 10.1002/jctb.5881
    [23] 陈彦广, 王新惠, 韩洪晶, 安宏宇, 王海英, 张雷. 复合金属氧化物催化热解木质素制备芳香族化合物[J]. 工业催化,2016,24(9):69−74. doi: 10.3969/j.issn.1008-1143.2016.09.015

    CHEN Yan-guan, WANG Xin-hui, HAN Hong-jing, AN Hong-yu, ZHANG Lei. Preparation of aromatic compounds from catalytic pyrolysis of lignin by complex metal oxide[J]. Ind Catal,2016,24(9):69−74. doi: 10.3969/j.issn.1008-1143.2016.09.015
    [24] LONG J, LI X, GUO B, WANG L, ZHANG N. Catalytic delignification of sugarcane bagasse in the presence of acidic ionic liquids[J]. Catal Today,2013,200(1):99−105.
    [25] ZHAO W, LI X, LI H. Selective hydrogenolysis of lignin catalyzed by the cost-effective Ni metal supported on alkaline MgO[J]. ACS Sustainable Chem Eng,2019,7(24):19750−19760. doi: 10.1021/acssuschemeng.9b05041
    [26] SONG W, SONG M, JIANG X, YI X D, LAI W K. Hydrolytic cleavage of lignin derived C–O bonds by acid/base catalysis in water[J]. React Kinet, Mech Catal,2021,133(1):371−382. doi: 10.1007/s11144-021-01990-1
    [27] SHARMA R K, WOOTEN J B, BALIGA V L, LIN X H, CHAN W G, HAJALIGOL M R. Characterization of chars from pyrolysis of lignin[J]. Fuel, 2004, 83(11/12): 1469–1482.
    [28] SUN X F, WANG H H, ZHANG G C, FOWLER P, RAJARATNAM M. Extraction and characterization of lignins from maize stem and sugarcane bagasse[J]. J Appl Polym Sci,2011,120(6):3587−3595. doi: 10.1002/app.33551
    [29] WEN J L, XUE B L, XU F, SUN R C, PINKERT A. Unmasking the structural features and property of lignin from bamboo[J]. Ind Crops Prod,2013,42(1):332−343.
    [30] RAHIMI A, AZARPIRA A, KIM H, RALPH J, STAHL S S. Chemoselective metal-free aerobic alcohol oxidation in lignin[J]. J Am Chem Soc,2013,135(17):6415−6418. doi: 10.1021/ja401793n
    [31] SUN S L, WEN J L, MA M G, LI M F, SUN R C. Revealing the structural inhomogeneity of lignins from sweet sorghum stem by successive alkali extractions[J]. J Agric Food Chem,2013,61(18):4226−4235. doi: 10.1021/jf400824p
    [32] ANDO D, RALPH J. Method to regioselectively iodine-tag free-phenolic aromatic end-groups in lignin for 1H–13C–HSQC NMR analysis[J]. ACS Sustainable Chem Eng,2019,7(22):18624−18629. doi: 10.1021/acssuschemeng.9b04981
    [33] LANCEFIELD C S, OJO O S, TRAN F, TRAN F, WESTWOOD N J. Isolation of functionalized phenolic monomers through selective oxidation and C–O bond cleavage of the β-O-4 linkages in lignin[J]. Angew Chem (International ed. ),2015,54(1):258−262. doi: 10.1002/anie.201409408
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  411
  • HTML全文浏览量:  191
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-20
  • 修回日期:  2021-11-24
  • 录用日期:  2021-11-29
  • 网络出版日期:  2021-12-18
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回