留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水热合成温度对CuO/CeO2催化甲醇水蒸气重整制氢性能的影响

冯旭 林宇 张财顺 韩蛟 庆绍军 张磊 高志贤 官国清

冯旭, 林宇, 张财顺, 韩蛟, 庆绍军, 张磊, 高志贤, 官国清. 水热合成温度对CuO/CeO2催化甲醇水蒸气重整制氢性能的影响[J]. 燃料化学学报(中英文), 2022, 50(7): 832-840. doi: 10.19906/j.cnki.JFCT.2021096
引用本文: 冯旭, 林宇, 张财顺, 韩蛟, 庆绍军, 张磊, 高志贤, 官国清. 水热合成温度对CuO/CeO2催化甲醇水蒸气重整制氢性能的影响[J]. 燃料化学学报(中英文), 2022, 50(7): 832-840. doi: 10.19906/j.cnki.JFCT.2021096
FENG Xu, LIN Yu, ZHANG Cai-shun, HAN Jiao, QING Shao-jun, ZHANG Lei, GAO Zhi-xian, GUAN Guo-qing. Effects of hydrothermal reaction temperatures on the performance of CuO/CeO2 catalyst for hydrogen production from steam reforming methanol[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 832-840. doi: 10.19906/j.cnki.JFCT.2021096
Citation: FENG Xu, LIN Yu, ZHANG Cai-shun, HAN Jiao, QING Shao-jun, ZHANG Lei, GAO Zhi-xian, GUAN Guo-qing. Effects of hydrothermal reaction temperatures on the performance of CuO/CeO2 catalyst for hydrogen production from steam reforming methanol[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 832-840. doi: 10.19906/j.cnki.JFCT.2021096

水热合成温度对CuO/CeO2催化甲醇水蒸气重整制氢性能的影响

doi: 10.19906/j.cnki.JFCT.2021096
基金项目: 国家自然科学基金(21673270),辽宁省教育厅科学研究经费项目(L2019038)和辽宁省自然科学基金面上项目(2019-MS-221)资助
详细信息
    通讯作者:

    E-mail: lnpuzhanglei@163.com

    gaozx@sxicc.ac.cn

  • 中图分类号: O643

Effects of hydrothermal reaction temperatures on the performance of CuO/CeO2 catalyst for hydrogen production from steam reforming methanol

Funds: The project was supported by the National Natural Science Foundation of China (21673270), Scientific Research Funds Project of Liaoning Education Department (L2019038) and the Project of the National Science Fund in Liaoning Province (2019-MS-221)
  • 摘要: 以Ce(NO3)3·6H2O为铈源,尿素为沉淀剂,采用水热法制备纳米CeO2载体,并通过改变水热合成温度来控制CeO2载体的微观结构,再通过等体积浸渍法制得CuO/CeO2催化材料,并将其应用在甲醇水蒸气重整制氢反应(MSR)中进行性能评价。通过低温N2吸附-脱附、XRD、H2-TPR、XPS等表征,探究了不同水热合成温度对纳米CeO2载体的微观结构、CuO/CeO2催化材料结构和甲醇水蒸气重整制氢反应性能的影响。结果表明,在水热合成温度为180 ℃条件下制备的纳米CeO2载体具有立方萤石结构,且负载CuO后制备的CuO/CeO2催化材料中表相CuO的还原温度较低、Cu-Ce间的相互作用较强、催化材料表面氧空穴较多,因此,表现出较好的催化活性。当反应温度为280 ℃,水醇物质的量比(W/M)为1.2,甲醇水蒸气气体空速(GHSV)为800 h− 1时,甲醇转化率可达到91.0%,重整气中CO摩尔分数为1.29%。
  • FIG. 1681.  FIG. 1681.

    FIG. 1681.  FIG. 1681.

    图  1  不同水热合成温度制备CeO2的XRD谱图

    Figure  1  XRD patterns of CeO2 prepared at different hydrothermal temperatures

    图  2  不同水热合成温度制备CuO/CeO2的XRD谱图

    Figure  2  XRD patterns of CuO/CeO2 prepared at different hydrothermal temperatures

    图  3  不同水热合成温度制备CeO2的N2吸附-脱附等温曲线

    Figure  3  N2 adsorption desorption isotherms of CeO2 prepared at different temperatures

    图  4  不同水热合成温度制备CuO/CeO2-x的N2吸附-脱附等温曲线

    Figure  4  N2 adsorption desorption isotherms of CuO/CeO2-x prepared at different temperatures

    图  5  不同水热合成温度制备CuO/CeO2的H2-TPR谱图

    Figure  5  H2-TPR spectra of CuO/CeO2 with different hydrothermal reaction temperatures

    图  6  不同水热合成温度制备CuO/CeO2的Ce 3d XPS谱图

    Figure  6  Ce 3d XPS spectra of CuO/CeO2 were prepared at different hydrothermal reaction temperatures

    图  7  不同水热合成温度制备CuO/CeO2的Cu 2p XPS谱图

    Figure  7  Cu 2p XPS spectra of CuO/CeO2 were prepared at different hydrothermal reaction temperatures

    图  8  不同水热合成温度制备CuO/CeO2的Cu LMM XPS谱图

    Figure  8  Cu LMM XPS spectra of CuO/CeO2 were prepared at different hydrothermal reaction temperatures

    图  9  不同水热合成温度制备的CuO/CeO2催化剂的O 1s XPS谱图

    Figure  9  O 1s XPS spectra of CuO/CeO2 catalysts prepared with different hydrothermal reaction temperatures

    图  10  催化活性与MSR反应温度的关系

    Figure  10  Profiles of the catalytic activity as a function of MSR reaction temperature

    图  11  CO的含量与MSR反应温度的关系

    Figure  11  Profiles of the CO molar content as a function of MSR reaction temperature

    图  12  CO比选择性与MSR反应温度的关系

    Figure  12  Profiles of the CO specific selectivity as a function of MSR temperature

    表  1  CeO2和CuO/CeO2-x的物化性质

    Table  1  Physicochemical and hydrogen production rate of CuO/CeO2-x and CeO2

    CatalystLattice parameters of CeO2Crystal size of CeO2/nmSBET
    /(m2·g−1)
    Pore volume
    /(cm3·g−1)
    CeO2-1405.40414.186.10.08
    CeO2-1605.41019.798.10.08
    CeO2-1805.40819.576.60.07
    CeO2-2005.40523.955.20.05
    CuO/CeO2-1405.39954.10.06
    CuO/CeO2-1605.40851.70.06
    CuO/CeO2-1805.40438.20.05
    CuO/CeO2-2005.39831.80.04
    a: determined by N2O experiments
    下载: 导出CSV

    表  2  催化剂的还原峰位置和Cu含量

    Table  2  Reduction peak position of catalyst and Cu content

    Catalystαβγ
    tpeak/℃xCu/%tpeak/℃xCu/%tpeak/℃xCu/%
    CuO/CeO2-14016332194662352.0
    CuO/CeO2-16016333193652342.0
    CuO/CeO2-18015835189642291.0
    CuO/CeO2-200164142094225344
    下载: 导出CSV

    表  3  催化剂Ce 3d和Cu 2p的XPS曲线拟合结果

    Table  3  Fitting results of Ce 3d and Cu 2p XPS curves of catalysts

    CatalystContent ratio
    of Ce3+/%
    Content ratio
    of Cu+/%
    CuO/CeO2-14013.949.6
    CuO/CeO2-16015.851.6
    CuO/CeO2-18018.253.8
    CuO/CeO2-20013.644.4
    下载: 导出CSV
  • [1] HARVEY H J M. Hydrogen energy production using manganese/semiconductor system inspired by photosynthesis[J]. Int J Hydrogen Energy,2017,42(12):8530−8538. doi: 10.1016/j.ijhydene.2017.01.100
    [2] 闫月君, 刘启斌, 隋军, 金红光. 甲醇水蒸气催化重整制氢技术研究进展[J]. 化工学报,2012,31(7):1468−1476.

    YAN Yue-jun, LIU Qi-bin, SUI Jun, JIN Hong-guang. Research progress of hydrogen production technology by methanol steam catalytic reforming[J]. Acta Chim Sin,2012,31(7):1468−1476.
    [3] THOMAS L R, KRUMPELT M, SHYMAA A, ROCKY K, KUNG H H. Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction[J]. J Mol Catal A: Chem,2000,162(1):275−285.
    [4] LIN L L, ZHENG G Y, ZHOU W, WEN X D, SHI C, MA D. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature,2017,544(7648):80−83. doi: 10.1038/nature21672
    [5] AGARWAL S, ZHU X, HENSEN E J M, MOJET B L, LEFFERTS L. Surface-dependence of defect chemistry of nanostructured ceria[J]. J Phys Chem C, 2015, 119(22): 150507121028006.
    [6] 刘玉娟, 许骥, 佟宇飞, 张娜, 张磊, 刘道胜, 韩蛟, 张财顺. 氧化铈纳米材料合成方法的研究进展[J]. 辽宁石油化工大学学报,2017,37(5):8−12+37. doi: 10.3969/j.issn.1672-6952.2017.05.002

    LIU Yu-juan, XU Ji, DONG Yu-fei, ZHANG Na, ZHANG Lei, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Research Progress on synthesis methods of ceria nano materials[J]. J Liaoning Univ Pet Chem Technol,2017,37(5):8−12+37. doi: 10.3969/j.issn.1672-6952.2017.05.002
    [7] SAMAI B, SARKAR S, CHALL S, RAKSHIT S, BHATTACHARYA S C. Polymer-fabricated synthesis of cerium oxide nanoparticles and applications as a green catalyst towards multicomponent transformation with size-dependent activity studies[J]. Crystengcomm,2016,18(40):7873−7882. doi: 10.1039/C6CE01104G
    [8] CHEN C Q, ZHAN Y Y, ZHOU J K, LI D L, ZHANG Y J, LIN X Y, JIANG L L, ZHENG Q. Cu/CeO2 Catalyst for Water-Gas Shift Reaction: Effect of CeO2 Pretreatment[J]. Chemphyschem,2018,12(19):1448−1455.
    [9] LIU Y Y, TAKASHI H, TATSUO T, KUNIO S, SATOSHI H, KAZUHISA M, RYUJI S, TOMOKO I M, KUMAGAI. Steam reforming of methanol over Cu/CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts[J]. Top Catal,2003,22(3-4):205−213.
    [10] GONZALO Á, FRANCISCO G, PAULO A. CuO and CeO2 catalysts supported on Al2O3, ZrO2, and SiO2 in the oxidation of CO at low temperature[J]. Appl Catal A: Gen,2008,343(1):16−24.
    [11] CAMARA A L, CHANSAI S, HARDACRE C, MARTINEZ-ARIAS A. The water-gas shift reaction over CeO2/CuO: Operando SSITKA-DRIFTS-mass spectrometry study of low temperature mechanism[J]. Int J Hydrog Energy,2014,39(8):4095−4101. doi: 10.1016/j.ijhydene.2013.05.087
    [12] CHEN S Q, LI L P, HU W B, HUANG X S, LI Q, XU Y, ZUO Y, LI G S. Anchoring High-Concentration Oxygen Vacancies at Interfaces of CeO2-x/Cu toward Enhanced Activity for Preferential CO Oxidation[J]. ACS Appl Mater Inter,2015,7(14):22999−23007.
    [13] MAI H X, SUN L D, ZHANG Y W, SI R, FENG W, ZHANG H P, LIU H C, YAN C H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J Chen Phys,2006,109(51):24380−24385.
    [14] ZHOU K B, YANG Z Q, YANG S. Highly reducible CeO2 nanotubes[J]. ChemInform,2007,38(24):1215−1217.
    [15] 刘玉娟, 王东哲, 张磊, 王宏浩, 陈琳, 刘道胜, 韩蛟, 张财顺. 载体焙烧气氛对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J]. 燃料化学学报,2018,46(8):992−999. doi: 10.3969/j.issn.0253-2409.2018.08.011

    LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, WANG Hong-hao, CHEN Lin, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Effect of impregnation sequence of Ce on the performance of Cu/Zn Al hydrotalcite derived catalyst for hydrogen production by methanol steam reforming effect of carrier calcination atmosphere on CuO/CeO2 Catalyst for hydrogen production by methanol steam reforming[J]. J Fuel Chem Technol,2018,46(8):992−999. doi: 10.3969/j.issn.0253-2409.2018.08.011
    [16] 杨淑倩, 张娜, 贺建平, 张磊, 王宏浩, 白金, 张健, 刘道胜, 杨占旭. Ce的浸渍顺序对Cu/Zn-Al水滑石衍生催化剂用于甲醇水蒸气重整制氢性能的影响[J]. 燃料化学学报,2018,46(4):479−488. doi: 10.3969/j.issn.0253-2409.2018.04.014

    YANG Shu-qian, ZHANG Na, HE Jian-ping, ZHANG Lei, WANG Hong-hao, BAI Jin, ZHANG Jian, LIU Dao-sheng, YANG Zhan-xu. Effect of impregnation sequence of Ce on the performance of Cu/Zn Al hydrotalcite derived catalyst for hydrogen production from methanol steam reforming[J]. J Fuel Chem Technol,2018,46(4):479−488. doi: 10.3969/j.issn.0253-2409.2018.04.014
    [17] GUO X L, ZHOU R X. A new insight into morphology effect of ceria on CuO/CeO2 catalysts for CO selective oxidation in hydrogen-rich gas[J]. Catal Sci Technol,2016,6(11):3862−3871. doi: 10.1039/C5CY01816A
    [18] LUO M F, MA J M, LU J Q, SONG Y J, WANG Y J. High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation[J]. J Catal,2007,246(1):52−59. doi: 10.1016/j.jcat.2006.11.021
    [19] 王金果, 陈菲菲, 曹锋雷, 卞振锋. 多孔单晶CeO2空壳球的制备及其CO催化氧化性能研究[J]. 上海师范大学学报(自然科学版), 2013, 42(3): 288–292.

    WANG Jin-guo, CHEN Fei-fei, CAO Feng-lei, BIAN Zhen-feng. Preparation of porous single crystal CeO2 hollow shell spheres and their catalytic oxidation properties for CO[J] J Shanghai Norm Univ, 2013, 42(3): 288–292.
    [20] FRANCO F, ARANGO-DIAZ A, STORARO L, RODRIGUEZ C E, MORETTI, CECILIA. CuO-CeO2 supported on montmorillonite-derived porous clay heterostructures (PCH) for preferential CO oxidation in H2-rich stream[J]. Catal Today,2015,253:126−136. doi: 10.1016/j.cattod.2015.01.040
    [21] 赵艳娜, 姬定西. 纳米CeO2/水性聚氨酯复合材料的制备及性能[J]. 化工进展,2017,36(12):4501−4507.

    ZHAO Yan-na, NI Ding-xi. Preparation and properties of nano CeO2/waterborne polyurethane Composites[J]. Chem Ind Eng Prog,2017,36(12):4501−4507.
    [22] 贺建平, 张磊, 陈琳, 杨占旭, 佟宇飞. CeO2改性Cu/Zn-Al水滑石衍生催化剂对甲醇水蒸气重整制氢性能的影响[J]. 高等学校化学学报,2017,38(10):1822−1828. doi: 10.7503/cjcu20170158

    HE Jian-ping, ZHANG Lei, CHEN Lin, YANG Zhan-xu, TONG Yu-fei. Effect of CeO2 modified Cu/Zn Al hydrotalcite derived catalyst on hydrogen production from methanol steam reforming[J]. J Chem Eng Coll Univ,2017,38(10):1822−1828. doi: 10.7503/cjcu20170158
    [23] JUNG W Y, HONG S S. Complete oxidation of benzene over CuO-CeO2 catalysts Prepared using different process[J]. J Nanosci Nanotechnol,2016,16(5):4576−4579. doi: 10.1166/jnn.2016.10983
    [24] WANG C, GCHENG Q G, WANG X L, MA K, BAI X Q, TAN S R, TIAN Y, DING T, ZHENG L R, ZHANG J, LI X G. Enhanced catalytic performance for CO preferential oxidation over CuO catalysts supported on highly defective CeO2 nanocrystals[J]. Appl Surf Sci,2017,422:932−943. doi: 10.1016/j.apsusc.2017.06.017
    [25] YANG S Q, ZHOU F, LIU Y J, ZHANG L, CHEN Y, WANG H H, TIAN Y, ZHANG C S, LIU D S. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming[J]. Int J Hydrog Energy,2019,44(14):7252−7261. doi: 10.1016/j.ijhydene.2019.01.254
    [26] WEI S, TIAN Q J Q, CUI M X, YAN P F, SEIK W N, LI W, LI G M. Catalytic performance of CeO2-supported Ni catalyst for hydrogenation of nitroarenes fabricated via coordination-assisted strategy[J]. ACS Appl Mater Inter,2018,10(17):14698−14707. doi: 10.1021/acsami.8b01187
    [27] SIMONA B, ANTONELLA D, NICOLETTA R, FEDERCA Z. Optimization of tailoring of CuOx species of silica alumina supported catalysts for the selective catalytic reduction of NOx[J]. J Phys Chem B,2003,107(22):5168−5176. doi: 10.1021/jp022064x
    [28] AMADINE O, ESSAMLALI Y, FIHRI A, ZAHOUILY M L. Effect of calcination temperature on the structure and catalytic performance of copper-ceria mixed oxide catalysts in phenol hydroxylation[J]. RSC Adv,2017,7(21):12586. doi: 10.1039/C7RA00734E
    [29] ZHANG L, PAN L W, NI C J, SUN T J, WANG S D, HU Y K, WANG A J, ZHAO S S. Effects of precipitation aging time on the performance of CuO/ZnO/CeO2-ZrO2 for methanol steam reforming[J]. J Fuel Chem Technol,2013,41(7):883−888. doi: 10.1016/S1872-5813(13)60038-9
    [30] JI Y J, JIN Z Y, LI J, ZHANG Y, LIU H Z, SHI L S, ZHONG Z Y, SU F B. Rambutan-like hierarchically heterostructured CeO2-CuO hollow microspheres: Facile hydrothermal synthesis and applications[J]. Nano Res,2017,10(2):381−396. doi: 10.1007/s12274-016-1298-0
    [31] 穆昕, 潘立卫, 郏景省, 王树东. 微型平板式反应器中甲醇水蒸气重整制氢的研究[J]. 燃料化学学报,2008,36(3):338−342. doi: 10.3969/j.issn.0253-2409.2008.03.016

    MU Xin, PAN Li-wei, JIA Jing-sheng, WANG Shu-dong. Study on hydrogen production by methanol steam reforming in micro plate reactor[J]. J Fuel Chem Technol,2008,36(3):338−342. doi: 10.3969/j.issn.0253-2409.2008.03.016
    [32] 张磊, 潘立卫, 倪长军, 孙天军, 王树东, 胡永康, 王安杰, 赵生生. 沉淀温度对CuO/ZnO/CeO2/ZrO2甲醇水蒸气重整制氢催化剂性能的影响[J]. 催化学报,2012,33(12):1958−1964.

    ZHANG Lei, PAN Li-wei, NI Chang-jun, SUN Tian-jun, WANG Shu-dong, HU Yong-kang, WANG An-jie, ZHAO Sheng-sheng. Effect of precipitation temperature on performance of CuO/ZnO/CeO2/ZrO2 Catalyst for hydrogen production by methanol steam reforming[J]. J Catal,2012,33(12):1958−1964.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  518
  • HTML全文浏览量:  135
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29
  • 修回日期:  2021-12-13
  • 录用日期:  2021-12-13
  • 网络出版日期:  2022-01-14
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回