留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锰改性对ZIF-67衍生Co3O4低温催化氧化甲醛性能的影响

向宁 韩小金 郑剑锋 李巧艳 赵青松 侯亚芹 黄张根

向宁, 韩小金, 郑剑锋, 李巧艳, 赵青松, 侯亚芹, 黄张根. 锰改性对ZIF-67衍生Co3O4低温催化氧化甲醛性能的影响[J]. 燃料化学学报(中英文), 2022, 50(7): 859-867. doi: 10.19906/j.cnki.JFCT.2022005
引用本文: 向宁, 韩小金, 郑剑锋, 李巧艳, 赵青松, 侯亚芹, 黄张根. 锰改性对ZIF-67衍生Co3O4低温催化氧化甲醛性能的影响[J]. 燃料化学学报(中英文), 2022, 50(7): 859-867. doi: 10.19906/j.cnki.JFCT.2022005
XIANG Ning, HAN Xiao-jin, ZHENG Jian-feng, LI Qiao-yan, ZHAO Qing-song, HOU Ya-qin, HUANG Zhang-gen. Effect of manganese modification on the low-temperature formaldehyde oxidation performance of ZIF-67 derived Co3O4[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 859-867. doi: 10.19906/j.cnki.JFCT.2022005
Citation: XIANG Ning, HAN Xiao-jin, ZHENG Jian-feng, LI Qiao-yan, ZHAO Qing-song, HOU Ya-qin, HUANG Zhang-gen. Effect of manganese modification on the low-temperature formaldehyde oxidation performance of ZIF-67 derived Co3O4[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 859-867. doi: 10.19906/j.cnki.JFCT.2022005

锰改性对ZIF-67衍生Co3O4低温催化氧化甲醛性能的影响

doi: 10.19906/j.cnki.JFCT.2022005
基金项目: 国家自然科学基金(21978314),山西省高等学校科技创新项目(2021L527)和山西省“1331”工程资助
详细信息
    通讯作者:

    Tel: +86 351 4043727, E-mail: zghuang@sxicc.ac.cn

    bless92@126.com

  • 中图分类号: X701.7

Effect of manganese modification on the low-temperature formaldehyde oxidation performance of ZIF-67 derived Co3O4

Funds: The project was supported by the National Natural Science Foundation of China (21978314), the Scientific and Technological Innovation Programs of Higher Education Institutions of Shanxi Province (2021L527) and the Fund for Shanxi Province “1331 project”
  • 摘要: 针对ZIF-67衍生Co3O4催化剂低温甲醛氧化性能不佳的问题,采用锰(Mn)对Co3O4催化剂进行改性以提升其低温甲醛氧化性能。活性评价结果表明,相比于未改性的Co3O4催化剂,Mn改性后的Mn-Co3O4催化剂甲醛氧化活性显著提升,在118 ℃下即可实现90%的甲醛转化率(进口甲醛浓度为98.16 mg/m3,空速为60000 mL /(gcat·h))。XRD、Raman和BET结果显示,Mn改性后催化剂的结晶度降低,缺陷增加,比表面积增大,这有利于反应物分子的吸附和活性位点的暴露。XPS、H2-TPR和O2-TPD表征结果表明,Mn-Co间存在的强相互作用显著改善了Mn-Co3O4催化剂的低温氧化还原性能和氧活化能力,使其具有更加丰富的Co3+和表面吸附氧物种。最终,这些因素共同促进了Mn-Co3O4催化剂对甲醛的降解。此外,in-situ DRIFTS结果表明,亚甲二氧基和甲酸盐物种是甲醛在Mn-Co3O4催化剂上催化氧化的主要中间物种。
  • FIG. 1684.  FIG. 1684.

    FIG. 1684.  FIG. 1684.

    图  1  Co3O4和Mn-Co3O4催化剂的甲醛氧化起燃曲线

    Figure  1  Light-off profiles of HCHO oxidation over Co3O4 and Mn-Co3O4 catalysts

    图  2  Mn-Co3O4催化剂的甲醛氧化稳定性测试

    Figure  2  Stability test of Mn-Co3O4 catalyst for HCHO oxidation at 120 ℃

    图  3  Co3O4和Mn-Co3O4催化剂的XRD谱图

    Figure  3  XRD patterns of Co3O4 and Mn-Co3O4 catalysts

    图  4  Co3O4和Mn-Co3O4催化剂的Raman谱图

    Figure  4  Raman spectra of Co3O4 and Mn-Co3O4 catalysts

    图  5  Co3O4和Mn-Co3O4催化剂的氮气吸附-脱附等温线(a)和孔径分布(b)

    Figure  5  N2 adsorption-desorption isotherms (a) and pore size distributions (b) of Co3O4 and Mn-Co3O4 catalysts

    图  6  不同催化剂前驱体和催化剂的SEM照片

    Figure  6  SEM images of various catalyst precursors and catalysts

    (a): ZIF-67; (b): Mn-ZIF-67; (c): Co3O4; (d): Mn-Co3O4; (e): EDS-mapping images of Mn-Co3O4

    图  7  Co3O4和Mn-Co3O4催化剂的XPS谱图

    Figure  7  XPS patterns of Co3O4 and Mn-Co3O4 catalysts

    图  8  Co3O4和Mn-Co3O4催化剂的H2-TPR谱图

    Figure  8  H2-TPR patterns of Co3O4 and Mn-Co3O4 catalysts

    图  9  Co3O4和Mn-Co3O4催化剂的O2-TPD谱图

    Figure  9  O2-TPD patterns of Co3O4 and Mn-Co3O4 catalysts

    图  10  Mn-Co3O4催化剂的原位红外光谱谱图

    Figure  10  In-situ DRIFTS spectra of Mn-Co3O4 catalyst for HCHO oxidation at 120 ℃

    图  11  甲醛在Mn-Co3O4催化剂上可能的氧化路径示意图

    Figure  11  Possible HCHO oxidation pathway over Mn-Co3O4 catalyst

    表  1  Co3O4和Mn-Co3O4催化剂的结构参数

    Table  1  Properties of Co3O4 and Mn-Co3O4 catalysts

    SampleCrystallite size /nmLattice parameter /ÅSBET /(m2·g−1)Pore volume /(cm3·g−1)Average pore diameter /nm
    Co3O421.58.07339.750.3333.38
    Mn-Co3O416.48.08559.380.3926.00
    下载: 导出CSV

    表  2  Co3O4和Mn-Co3O4催化剂的XPS表征和表面吸附氧脱附量

    Table  2  XPS results and desorption amounts of surface-adsorbed oxygen of Co3O4 and Mn-Co3O4 catalysts

    SampleCo3+/Co2+Mn4+/MnOα/OβDesorption amounts
    of surface-adsorbed
    oxygen /(μmol·g−1)
    Co3O40.550.36140.23
    Mn-Co3O40.740.430.48168.80
    下载: 导出CSV
  • [1] 张长斌. 室内空气污染物催化氧化研究[J]. 环境化学,2015,34(5):817−823. doi: 10.7524/j.issn.0254-6108.2015.05.2015010509

    ZHANG Chang-bin. Study of catalytic oxidation of indoor air pollutants[J]. Environ Chem,2015,34(5):817−823. doi: 10.7524/j.issn.0254-6108.2015.05.2015010509
    [2] SALTHAMMER T, MENTESE S, MARUTZKY R. Formaldehyde in the indoor environment[J]. Chem Rev,2010,110(4):2536−2572. doi: 10.1021/cr800399g
    [3] TANG X J, BAI Y, DUONG A, SMITH M T, LI L Y, ZHANG L P. Formaldehyde in China: Production, consumption, exposure levels, and health effects[J]. Environ Int,2009,35(8):1210−1224. doi: 10.1016/j.envint.2009.06.002
    [4] LI R, HUANG Y, ZHU D D, HO W K, LEE S C, CAO J J. A review of Co3O4-based catalysts for formaldehyde oxidation at low temperature: Effect parameters and reaction mechanism[J]. Aerosol Sci Eng,2020,4:147−168. doi: 10.1007/s41810-020-00065-3
    [5] NIE L H, YU J G, JARONIEC M, TAO F F. Room-temperature catalytic oxidation of formaldehyde on catalysts[J]. Catal Sci Technol,2016,6(10):3649−3669.
    [6] YE J W, YU Y, FAN J J, CHENG B, YU J G, HO W K. Room-temperature formaldehyde catalytic decomposition[J]. Environ Sci: Nano,2020,7:3655−3709. doi: 10.1039/D0EN00831A
    [7] GUO J H, LIN C X, JIANG C J, ZHANG P Y. Review on noble metal-based catalysts for formaldehyde oxidation at room temperature[J]. Appl Surf Sci,2019,475:237−255. doi: 10.1016/j.apsusc.2018.12.238
    [8] BAI B Y, QIAO Q, LI J H, HAO J M. Progress in research on catalysts for catalytic oxidation of formaldehyde[J]. Chin J Catal,2016,37(1):102−122. doi: 10.1016/S1872-2067(15)61007-5
    [9] ZHANG C B, HE H, TANAKA K. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature[J]. Appl Catal B: Environ,2006,65:37−43. doi: 10.1016/j.apcatb.2005.12.010
    [10] LI Y B, ZHANG C B, MA J Z, CHEN M, DENG H, HE H. High temperature reduction dramatically promotes Pd/TiO2 catalyst for ambient formaldehyde oxidation[J]. Appl Catal B: Environ,2017,217:560−569. doi: 10.1016/j.apcatb.2017.06.023
    [11] XIANG N, HOU Y Q, HAN X J, LI Y L, GUO Y P, LIU Y J, HUANG Z G. Promoting effect and mechanism of alkali Na on Pd/SBA-15 for room temperature formaldehyde catalytic oxidation[J]. ChemCatChem,2019,11:5098−5107. doi: 10.1002/cctc.201901039
    [12] 崔维怡, 王希越, 谭乃迪. 热处理温度对Pt/TiO2纳米带复合物催化HCHO氧化性能的影响[J]. 燃料化学学报,2021,49(11):1701−1708. doi: 10.1016/S1872-5813(21)60113-5

    CUI Wei-yi, WANG Xi-yue, TAN Nai-di. Effect of thermal treatment temperature on catalytic performance of Pt/TiO2 nanobelt composite for HCHO oxidation[J]. J Fuel Chem Technol,2021,49(11):1701−1708. doi: 10.1016/S1872-5813(21)60113-5
    [13] CHEN B B, SHI C, CROCKER M, WANG Y, ZHU A M. Catalytic removal of formaldehyde at room temperature over supported gold catalysts[J]. Appl Catal B: Environ,2013,132−133:245−255. doi: 10.1016/j.apcatb.2012.11.028
    [14] LI Y B, CHEN X Y, WANG C Y, ZHANG C B, HE H. Sodium enhances Ir/TiO2 activity for catalytic oxidation of formaldehyde at ambient temperature[J]. ACS Catal,2018,8(12):11377−11385. doi: 10.1021/acscatal.8b03026
    [15] LU S H, WANG F, CHEN C C, HUANG F L, LI K L. Catalytic oxidation of formaldehyde over CeO2-Co3O4 catalysts[J]. J Rare Earth,2017,35(9):867−874. doi: 10.1016/S1002-0721(17)60988-8
    [16] LU S H, LI K L, HUANG F L, CHEN C C, SUN B. Efficient MnOx-Co3O4-CeO2 catalysts for formaldehyde elimination[J]. Appl Surf Sci,2017,400:277−282. doi: 10.1016/j.apsusc.2016.12.207
    [17] 唐彤, 卫广程, 王慧敏, 刘墨, 张秋林, 宁平. Ce/Co比对Ag/CeO2-Co3O4催化剂低温氧化降解甲醛性能的影响[J]. 燃料化学学报,2019,47(5):590−597. doi: 10.3969/j.issn.0253-2409.2019.05.010

    TANG Tong, WEI Guang-cheng, WANG Hui-min, LIU Mo, ZHANG Qiu-lin, NING Ping. Effect of Ce/Co ratio on the catalytic performance of Ag/CeO2-Co3O4 in the low-temperature oxidation of formaldehyde[J]. J Fuel Chem Technol,2019,47(5):590−597. doi: 10.3969/j.issn.0253-2409.2019.05.010
    [18] BAI B Y, ARANDIYAN H, LI J H. Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts[J]. Appl Catal B: Environ,2013,142−143:677−683. doi: 10.1016/j.apcatb.2013.05.056
    [19] ZHANG Q H, LIU X H, FAN W Q, WANG Y. Manganese-promoted cobalt oxide as efficient and stable non-noble metal catalyst for preferential oxidation of CO in H2 stream[J]. Appl Catal B: Environ,2011,102:207−214. doi: 10.1016/j.apcatb.2010.11.043
    [20] DU X Y, LI C T, ZHAO L K, ZHANG J, GAO L, SHENG J J, YI Y Y, CHEN J Q, ZENG G M. Promotional removal of HCHO from simulated flue gas over Mn-Fe oxides modified activated coke[J]. Appl Catal B: Environ,2018,232:37−48. doi: 10.1016/j.apcatb.2018.03.034
    [21] DU X Y, LI C T, ZHANG J, ZHAO L K, LI S H, LYU Y, ZHANG Y D, ZHU Y C, HUANG L. Highly efficient simultaneous removal of HCHO and elemental mercury over Mn-Co oxides promoted Zr-AC samples[J]. J Hazard Mater,2021,408:124830. doi: 10.1016/j.jhazmat.2020.124830
    [22] CAI T, HUANG H, DENG W, DAI Q G, LIU W, WANG X Y. Catalytic combustion of 1, 2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts[J]. Appl Catal B: Environ,2015,166−167:393−405. doi: 10.1016/j.apcatb.2014.10.047
    [23] SHI C, WANG Y, ZHU A M, CHEN B B, AU C T. MnxCo3−xO4 solid solution as high-efficient catalysts for low-temperature oxidation of formaldehyde[J]. Catal Commun,2012,28:18−22. doi: 10.1016/j.catcom.2012.08.003
    [24] ZHANG L, SHI L Y, HUANG L, ZHANG J P, GAO R H, ZHANG D S. Rational design of high-performance deNOx catalysts based on MnxCo3−xO4 nanocages derived from metal-organic frameworks[J]. ACS Catal,2014,4(6):1753−1763. doi: 10.1021/cs401185c
    [25] GUAN B Y, YU X Y, WU H B, LOU X W. Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion[J]. Adv Mater,2017,29:1703614. doi: 10.1002/adma.201703614
    [26] JIANG Z, LI Z P, QIN Z H, SUN H Y, JIAO X L, CHEN D R. LDH nanocages synthesized with MOF templates and their high performance as supercapacitors[J]. Nanoscale,2013,5:11770−11775. doi: 10.1039/c3nr03829g
    [27] ZHANG P, GUAN B Y, YU L, LOU X W. Facile synthesis of multi-shelled ZnS-CdS cages with enhanced photoelectrochemical performance for solar energy conversion[J]. Chem,2018,4(1):162−173. doi: 10.1016/j.chempr.2017.10.018
    [28] ZHAO J H, TANG Z C, DONG F, ZHANG J Y. Controlled porous hollow Co3O4 polyhedral nanocages derived from metal-organic frameworks (MOFs) for toluene catalytic oxidation[J]. Mol Catal,2019,463:77−86. doi: 10.1016/j.mcat.2018.10.020
    [29] XU W J, CHEN X, CHEN J, JIA H P. Bimetal oxide CuO/Co3O4 derived from Cu ions partly-substituted framework of ZIF-67 for toluene catalytic oxidation[J]. J Hazard Mater,2021,403:123869. doi: 10.1016/j.jhazmat.2020.123869
    [30] TU S, CHEN Y, ZHANG X Y, YAO J Z, WU Y, WU H X, ZHANG J Y, WANG J L, MU B, LI Z, XIA Q B. Complete catalytic oxidation of formaldehyde at room temperature on MnxCo3−xO4 catalysts derived from metal-organic frameworks[J]. Appl Catal A: Gen,2021,611:117975. doi: 10.1016/j.apcata.2020.117975
    [31] 李安明, 卫广程, 郝乔慧, 赵宾, 张秋林. Mn含量对CeO2-ZrO2-MnOx催化剂甲苯氧化净化性能的影响[J]. 燃料化学学报,2020,48(2):231−239. doi: 10.3969/j.issn.0253-2409.2020.02.013

    LI An-ming, WEI Guang-cheng, HAO Qiao-hui, ZHAO Bin, ZHANG Qiu-lin. Effect of Mn content on the catalytic performance of CeO2-ZrO2-MnOx in the oxidation of toluene[J]. J Fuel Chem Technol,2020,48(2):231−239. doi: 10.3969/j.issn.0253-2409.2020.02.013
    [32] ZHAO W T, ZHANG Y Y, WU X W, ZHAN Y Y, WANG X Y, AU C T, JIANG L L. Synthesis of Co-Mn oxides with double-shelled nanocages for low-temperature toluene combustion[J]. Catal Sci Technol,2018,8:4494−4502. doi: 10.1039/C8CY01206G
    [33] DONG C, QU Z P, QIN Y, FU Q, SUN H C, DUAN X X. Revealing the highly catalytic performance of spinel CoMn2O4 for toluene oxidation: involvement and replenishment of oxygen species using in situ designed-TP techniques[J]. ACS Catal,2019,9(8):6698−6710. doi: 10.1021/acscatal.9b01324
    [34] SINHA A K, SUZUKI K, TAKAHARA M, AZUMA H, NONAKA T, SUZUKI N, TAKAHASHI N. Preparation and characterization of mesostructured γ-manganese oxide and its application to VOCs elimination[J]. J Phys Chem C,2008,112:16028−16035. doi: 10.1021/jp805211z
    [35] ZHENG Y L, WANG W Z, JIANG D, ZHANG L. Amorphous MnOx modified Co3O4 for formaldehyde oxidation: improved low-temperature catalytic and photothermocatalytic activity.[J]. Chem Eng J,2016,284:21−27. doi: 10.1016/j.cej.2015.08.137
    [36] HAN D W, MA X Y, YANG X Q, XIAO M L, SUN H, MA L J, YU X L, GE M F. Metal organic framework-templated fabrication of exposed surface defect-enriched Co3O4 catalysts for efficient toluene oxidation[J]. J Colloid Interf Sci,2021,603:695−705. doi: 10.1016/j.jcis.2021.06.139
    [37] XIANG N, HAN X J, BAI Y R, LI Q Y, ZHENG J F, LI Y L, HOU Y Q, HUANG Z G. Size effect of γ-Al2O3 supports on the catalytic performance of Pd/γ-Al2O3 catalysts for HCHO oxidation[J]. Mol Catal,2020,494:111112. doi: 10.1016/j.mcat.2020.111112
    [38] CHEN D, QU Z P, SUN Y H, GAO K, WANG Y. Identification of reaction intermediates and mechanism responsible for highly active HCHO oxidation on Ag/MCM-41 catalysts[J]. Appl Catal B: Environ,2013,142−143:838−848. doi: 10.1016/j.apcatb.2013.06.025
    [39] ZHANG C B, LIU F D, ZHAI Y P, ARIGA H, YI N, LIU Y C, ASAKURA K, FLYTZANI-STEPHANOPOULOS M, HE H. Alkali-metal promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures[J]. Angew Chem Int Ed,2012,51:9628−9632. doi: 10.1002/anie.201202034
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  435
  • HTML全文浏览量:  208
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-19
  • 修回日期:  2022-01-12
  • 录用日期:  2022-01-19
  • 网络出版日期:  2022-01-28
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回