留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于煤气化细渣构建碳基氧还原催化剂及其催化性能研究

王思敏 龚岩 李恒 赵丽丽 郭庆华 于广锁

王思敏, 龚岩, 李恒, 赵丽丽, 郭庆华, 于广锁. 基于煤气化细渣构建碳基氧还原催化剂及其催化性能研究[J]. 燃料化学学报(中英文), 2022, 50(6): 714-723. doi: 10.19906/j.cnki.JFCT.2022006
引用本文: 王思敏, 龚岩, 李恒, 赵丽丽, 郭庆华, 于广锁. 基于煤气化细渣构建碳基氧还原催化剂及其催化性能研究[J]. 燃料化学学报(中英文), 2022, 50(6): 714-723. doi: 10.19906/j.cnki.JFCT.2022006
WANG Si-min, GONG Yan, LI Heng, ZHAO Li-li, GUO Qing-hua, YU Guang-suo. Preparation and properties of carbon-based electrocatalysts from gasification fine slag for oxygen reduction[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 714-723. doi: 10.19906/j.cnki.JFCT.2022006
Citation: WANG Si-min, GONG Yan, LI Heng, ZHAO Li-li, GUO Qing-hua, YU Guang-suo. Preparation and properties of carbon-based electrocatalysts from gasification fine slag for oxygen reduction[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 714-723. doi: 10.19906/j.cnki.JFCT.2022006

基于煤气化细渣构建碳基氧还原催化剂及其催化性能研究

doi: 10.19906/j.cnki.JFCT.2022006
基金项目: 宁夏回族自治区重点研发计划重大项目(2019BCH01001)和上海市青年科技启明星计划(21QA1402300)资助
详细信息
    通讯作者:

    Tel: 021-64251312,E-mail: gqh@ecust.edu.cn

  • 中图分类号: TM911.4

Preparation and properties of carbon-based electrocatalysts from gasification fine slag for oxygen reduction

Funds: The project was supported by the Project of Key Research Plan of Ningxia (2019BCH01001) and Shanghai Rising-Star Program (21QA1402300).
  • 摘要: 气化细渣是煤气化过程产生的一种含碳量较高的固体废弃物。经炭灰分离得到的高炭是制备炭材料的潜在碳源。本研究以气化细渣浮选-酸洗后的高炭为前驱体,通过高温活化制备了氮掺杂碳基催化剂,结合拉曼光谱、XPS和SEM等表征,探究了活化剂比例和氮源对催化剂理化特性的影响,揭示了两者与催化剂氧还原性能的内在关联,验证了气化细渣作为原料制备碳基氧还原催化剂的可行性。结果表明,随着活化剂KOH比例的增加,碳基催化剂的氧还原催化性能先增加后减小,当高炭和KOH质量比为1∶4时其催化性能最优。此外,相较于氯化铵,以三聚氰胺作为氮源具有更强的氮掺杂效应,使得CKN6-143催化剂的起始电位可达0.87 V(vs. RHE),极限扩散电流密度为4.95 mA/cm2,平均电子转移数为3.82,表现出良好的电催化性能,为气化细渣的高值化利用奠定了基础。
  • FIG. 1592.  FIG. 1592.

    FIG. 1592.  FIG. 1592.

    图  1  (a)气化细渣,(b)CKN-123,(c)CKN-133,(d)CKN-143,(e)CKN-153的扫描电镜照片和(f) CKN-143的EDS能谱照片

    Figure  1  SEM images of (a) gasification fine slag, (b) CKN-123, (c) CKN-133, (d) CKN-143, (e) CKN-153 and EDS spectrum of (f) CKN-143

    图  2  拉曼光谱谱图以及ID/IG

    Figure  2  Raman spectra and ID/IG

    图  3  不同活化比例的材料在O2饱和的0.1 mol/L KOH溶液中(a)CV曲线,(b)旋转环盘电极DECV曲线和(c)电子转移数与对应H2O2产率

    Figure  3  (a) CV curves, (b) DECV curves of RRDE and (c) electron transfer number and corresponding H2O2 yield of catalysts with different activation ratios in O2-saturated 0.1 mol/L KOH solutions

    图  4  O2饱和的0.1 mol/L KOH溶液中,(a)CKN-123、(b)CKN-133、(c)CKN-143和(d)CKN-153在不同转速时的LSV曲线、(e)K-L曲线和(f)Tafel曲线

    Figure  4  In O2-saturated 0.1 mol/L KOH solutions, LSV curves of (a) CKN-123, (b) CKN-133, (c) CKN-143 and (d) CKN-153 at different rotation rates, (e) K-L curves and (f) Tafel curves

    图  5  (a)CKN-143和(b)CKN6-143的扫描电镜照片

    Figure  5  SEM images of (a) CKN-143 and (b) CKN6-143

    图  6  CKN-143和CKN6-143的拉曼光谱谱图

    Figure  6  Raman spectra of CKN-143 and CKN6-143

    图  7  (a)XPS全谱图,(b)CKN-143、(d)CKN6-143的C 1s高分辨率谱图和(c)CKN-143、(e)CKN6-143的N 1s高分辨率谱图、(f)氮含量

    Figure  7  (a) XPS full spectra, C 1s high resolution spectra of (b) CKN-143, (d) CKN6-143 and N 1s high resolution spectra of (c) CKN-143, (e) CKN6-143, (f) content of N-containing species

    图  8  CKN-143和CKN6-143的(a)吸附-脱附曲线,(b)孔径分布

    Figure  8  (a) Nitrogen isothermal adsorption and desorption curves, (b) the pore size distribution of CKN-143 and CKN6-143

    图  9  在O2饱和的0.1 mol/L KOH溶液中,CKN-143,CKN6-143和Pt/C的(a)CV曲线,(b)旋转环盘电极DECV曲线,(c)电子转移数与对应H2O2产率,(d)K-L曲线

    Figure  9  In O2-saturated 0.1 mol/L KOH solutions, (a) CV curves, (b) DECV curves of RRDE, (c) electron transfer number and corresponding H2O2 yield, (d) K-L curves of CKN-143, CKN6-143 and Pt/C

    图  10  基于CKN-143和CKN6-143在恒定充放电电流密度为10 mA/cm2时的锌空气电池的循环充放电性能

    Figure  10  Charge-discharge cycling performance of the Zn-air flow batteries based on CKN-143 and CKN6-143 catalysts at a constant charge-discharge current density of 10 mA/cm2

    表  1  原料的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of raw materials

    SampleProximate analysis wad/% Ultimate analysis wad/%
    MVAFC CHONS
    FS3.5213.6346.7536.10 38.272.258.220.610.38
    AC2.2923.4625.6748.58 51.372.8212.952.072.83
    HC2.7825.2014.6557.37 59.083.3416.902.211.04
    下载: 导出CSV

    表  2  原料的灰成分分析

    Table  2  Ash composition analysis of raw materials

    SampleContent w/%
    SiO2Al2O3Fe2O3CaOSO3Na2OMgOK2Oothers
    FS44.1417.8116.3213.912.182.241.121.041.24
    AC44.9818.4812.8614.312.462.101.291.182.34
    HC81.045.853.143.493.380.210.230.711.95
    下载: 导出CSV

    表  3  CKN-143和CKN6-143的比表面积和孔容

    Table  3  Specific surface area (SSA) and pore volume of CKN-143 and CKN6-143

    CatalystA/(m2·g−1)Total pore
    volume/(cm3·g−1)
    Micropore
    volume/(cm3·g−1)
    Mesoporous and macroporous
    volume/(cm3·g−1)
    CKN-143 987.49 0.68 0.38 0.30
    CKN6-143 847.54 0.59 0.07 0.52
    下载: 导出CSV
  • [1] 曲江山, 张建波, 孙志刚, 杨晨年, 史达, 李少鹏, 李会泉. 煤气化渣综合利用研究进展[J]. 洁净煤技术,2020,26(1):184−193.

    QU Jiang-shan, ZHANG Jian-bo, SUN Zhi-gang, YANG Chen-nian, SHI Da, LI Shao-peng, LI Hui-quan. Research progress on comprehensive utilization of coal gasification slag[J]. Clean Coal Technol,2020,26(1):184−193.
    [2] LUCIE B. Unburned carbon from coal combustion ash: An overview[J]. Fuel Process Technol,2015,134:136−158. doi: 10.1016/j.fuproc.2015.01.028
    [3] ZHANG Y C, LI H X, GAO S T, GENG, Y, WU C L. A study on the chemical state of carbon present in fine ash from gasification[J]. Asia-Pac J Chem Eng,2019,14(4):2336.
    [4] 李恒, 赵丽丽, 龚岩, 崔启迪, 郭庆华, 于广锁. 表面活性剂复配对气化细渣浮选影响的试验研究[J]. 中国电机工程学报, https://doi.org/10.13334/j.0258-8013.pcsee.211309.

    LI Heng, ZHAO Li-li, GONG Yan, CUI Qi-di, GUO Qing-hua, YU Guang-suo. Experimental study on the performance of surfactants on the flotation effect of gasification fine slag[J]. Proc CSEE, https://doi.org/10.13334/j.0258-8013.pcsee.211309.
    [5] 黄宇宸. 煤转化固体产物的气化反应活性及电化学性能研究[D]. 上海: 华东理工大学, 2020.

    HUANG Yu-chen. On study gasification reaction activity and electrochemical performance of coal conversion solid product[D]. Shanghai: East China University of Science and Technology, 2020.
    [6] 史兆臣, 戴高峰, 王学斌, 董永胜, 李攀, 于伟, 谭厚章. 煤气化细渣的资源化综合利用技术研究进展[J]. 华电技术,2020,42(7):63−73. doi: 10.3969/j.issn.1674-1951.2020.07.009

    SHI Zhao-chen, DAI Gao-feng, WANG Xue-bin, DONG Yong-sheng, LI Pan, YU Wei, TAN Hou-zhang. Review on the comprehensive resources utilization technology of coal gasification fine slag[J]. Huadian Technol,2020,42(7):63−73. doi: 10.3969/j.issn.1674-1951.2020.07.009
    [7] 王萌. 质子交换膜燃料电池设计与综合优化研究[D]. 北京: 北京科技大学, 2019.

    WANG Meng. Design and comprehensive optimization of proton exchange membrane fuel cells[D]. Beijing: University of Science and Technology Beijing, 2019.
    [8] 孙玥. 碳基氧还原催化剂的制备和性能研究[D]. 济南: 济南大学, 2020.

    SUN Yue. Study on preparation and properties of carbon-based oxygen reduction catalysts[D]. Jinan: University of Jinan, 2020.
    [9] 丁晓波, 覃远航. N、S共掺杂碳基高效氧还原催化剂的制备[J]. 武汉工程大学学报,2021,43(4):362−366.

    DING Xiao-bo, QIN Yuan-hang. Preparation of N, S Co-doped carbon as highly efficient catalyst for oxygen reduction[J]. J Wuhan Inst Technol,2021,43(4):362−366.
    [10] KUANPING G, FENG D, ZHENHAI X, DURSTOCK M, LIMING D. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science,2009,323(5915):760−764. doi: 10.1126/science.1168049
    [11] CAO Y L, MAO S J, LI M M, CHEN Y Q, WANG Y. Metal/porous carbon composites for heterogeneous catalysis: old catalysts with improved performance promoted by N-doping[J]. ACS Catal,2017,7(12):8090−8112. doi: 10.1021/acscatal.7b02335
    [12] RUBIO B, IZQUIERDO M T, MAYORAL M C, BONA M T, MARTÍNEZ-TARAZONA R M. Preparation and characterization of carbon-enriched coal fly ash[J]. J Environ Manage,2008,88(4):1562−1570. doi: 10.1016/j.jenvman.2007.07.027
    [13] DENG D H, PAN X L, YU L A, CUI Y, JIANG Y P, QI J, LI W X, FU Q A, MA X C, XUE Q K, SUN G Q, BAO X H. Toward N-doped graphene via solvothermal synthesis[J]. Chem Mater,2010,23(5):1188−1193.
    [14] REYIMJAN A S, ALFRED B A, NALINI P S, SWAMINATHA P K, BRANKO N P. O2 reduction on graphite and nitrogen-doped graphite: experiment and theory[J]. J Phys Chem B,2006,110(4):1787−1793. doi: 10.1021/jp055150g
    [15] XING T, ZHENG Y, LI L H, COWIE B C C, GUNZELMANN D, QIAO S Z, HUANG S M, CHEN Y. Observation of active sites for oxygen reduction reaction on nitrogen-doped multilayer graphene[J]. ACS Nano,2014,8(7):6856−6862. doi: 10.1021/nn501506p
    [16] JIANG T, JIANG W, LI Y, XU Y, WANG Y. Facile regulation of porous N-doped carbon-based catalysts from covalent organic frameworks nanospheres for highly-efficient oxygen reduction reaction[J]. Carbon,2021,180(23):92−100.
    [17] JINTAO Z, TONG Z, JING M, ZHI W, JUNHAO L, XUZHONG G. ORR and OER of Co–N codoped carbon-based electrocatalysts enhanced by boundary layer oxygen molecules transfer[J]. Carbon,2021,172:556−568. doi: 10.1016/j.carbon.2020.10.075
    [18] JUNYU Z, GONG Z, SHENGYAO J, YUJUN Z, QINGHUA J, HUACHUN L, HUIJUAN L, JIUHUI Q. Graphitic N in nitrogen-doped carbon promotes hydrogen peroxide synthesis from electrocatalytic oxygen reduction[J]. Carbon,2020,163:154−161.
    [19] ZHI Q, SOOYEON H, XING L, CHENYU W, WIDITHA S, STAVROS K, DONGGUO L, MENGJIE C, YANGHUA H, MAOYU W, ZHENYU L, GUOFENG W, HUA Z, ZHENXING F, DONG S, JACOB S S, GANG W. 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: A balance between graphitization and hierarchical porosity[J]. Energy Environ Sci,2019,12(9):2830−2841. doi: 10.1039/C9EE01899A
    [20] JOSEPH V G, JAMES N B, EHREN E, MOHAMMAD Z R, MANISH V N, KEITH A F, SHERY S C, DAVID C C, BUDDIE M. Evaluation of two potassium-based activation agents for the production of oxygen- and nitrogen-doped porous carbons[J]. Energy Fuels,2020,34(5):6101−6112. doi: 10.1021/acs.energyfuels.0c00427
    [21] ZHANG J, SONG L H, ZHAO C F, YIN X P, ZHAO Y F. Co, N co-doped porous carbons as high-performance oxygen reduction electrocatalysts[J]. New Carbon Mater,2021,36(1):209−218. doi: 10.1016/S1872-5805(21)60016-1
    [22] CHAO W, RESHMA R R, PENG J Y, HUANG B T, IFAN E L S, MARCEL R, XU Z C J, YANG S H. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells[J]. Adv Mater,2019,31(31):1806296. doi: 10.1002/adma.201806296
    [23] XIANGLONG W, YIZHAO L, CHAO Y, YALI C, XINTAI S, MUHAMMAD U. Self-template porous carbon by direct activation of high-ash coal liquefaction residue for high-rate supercapacitor electrodes[J]. Int J Energy Res,2021,45(3):4782−4792. doi: 10.1002/er.6096
    [24] HE W H, WANG Y, JIANG C H, LU L H. Structural effects of a carbon matrix in non-precious metal O2-reduction electrocatalysts[J]. Chem Soc Rev,2016,45(9):2396−2409. doi: 10.1039/C5CS00665A
    [25] LIANG J, JIAO Y, JARONIEC M, QIAO S Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J]. Angew Chem Int Ed,2012,51(46):11496−11500. doi: 10.1002/anie.201206720
    [26] CHOI C H, PARK S H, WOO S I. Phosphorus-nitrogen dual doped carbon as an effective catalyst for oxygen reduction reaction in acidic media: effects of the amount of P-doping on the physical and electrochemical properties of carbon[J]. J Mater Chem,2012,22(24):12107−12115. doi: 10.1039/c2jm31079a
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  351
  • HTML全文浏览量:  166
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-28
  • 修回日期:  2022-01-13
  • 录用日期:  2022-01-19
  • 网络出版日期:  2022-01-28
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回