留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载型LaCoO3/MO2催化氧化甲苯与NO的性能研究

张娜 黄妍 张俊丰 赵令葵 李思密 陶泓帆 伍云凡

张娜, 黄妍, 张俊丰, 赵令葵, 李思密, 陶泓帆, 伍云凡. 负载型LaCoO3/MO2催化氧化甲苯与NO的性能研究[J]. 燃料化学学报(中英文), 2022, 50(7): 868-876. doi: 10.19906/j.cnki.JFCT.2022007
引用本文: 张娜, 黄妍, 张俊丰, 赵令葵, 李思密, 陶泓帆, 伍云凡. 负载型LaCoO3/MO2催化氧化甲苯与NO的性能研究[J]. 燃料化学学报(中英文), 2022, 50(7): 868-876. doi: 10.19906/j.cnki.JFCT.2022007
ZHANG Na, HUANG Yan, ZHANG Jun-feng, ZHAO Ling-kui, LI Si-mi, TAO Hong-fan, WU Yun-fan. Catalytic oxidation of NO and toluene by supported perovskite LaCoO3/MO2[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 868-876. doi: 10.19906/j.cnki.JFCT.2022007
Citation: ZHANG Na, HUANG Yan, ZHANG Jun-feng, ZHAO Ling-kui, LI Si-mi, TAO Hong-fan, WU Yun-fan. Catalytic oxidation of NO and toluene by supported perovskite LaCoO3/MO2[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 868-876. doi: 10.19906/j.cnki.JFCT.2022007

负载型LaCoO3/MO2催化氧化甲苯与NO的性能研究

doi: 10.19906/j.cnki.JFCT.2022007
基金项目: 湖南省重点研发计划项目(2019SK2071),湖南省战略性新兴产业科技攻关与重大科技成果转化项目(2019GK4027)资助
详细信息
    通讯作者:

    E-mail: xtuhy@163.com

  • 中图分类号: X701.7

Catalytic oxidation of NO and toluene by supported perovskite LaCoO3/MO2

Funds: The project was supported by Key Research and Development Project of Hunan Province (2019SK2071), Hunan Province Strategic Emerging Industry Scientific and Technological Breakthroughs and Major Scientific and Technological Achievements Transformation Project (2019GK4027)
  • 摘要: 本研究采用柠檬酸溶胶-凝胶法制备了一系列不同载体负载的LaCoO3/MO2催化剂(M = Zr、Ti、Ce),研究考察其催化氧化甲苯与NO的性能及关键机制。结果发现,以CeO2为载体的LaCoO3/CeO2催化剂表现出最佳的催化氧化性能,其甲苯的t90为245 ℃,同时在300 ℃时NO转化率可达68%。通过BET、XRD、H2-TPR和XPS对各负载型钙钛矿催化剂的理化性质进行表征。结果表明,负载型钙钛矿催化剂拥有更大的比表面积,从而有效提供了更多的吸附位点,同时负载型钙钛矿催化剂具有更活跃的晶格氧和更好的氧化还原性能。其中,LaCoO3与载体CeO2在接触界面上观察到Co离子与Ce离子之间存在着相互作用,形成晶格缺陷,这有利于氧空位的形成。利用原位漫反射红外光谱进一步探寻了反应机理,LaCoO3/CeO2催化剂上NO氧化符合Langmuir-Hinshelwood机制,甲苯氧化为Mars-van Krevelen机制。
  • FIG. 1685.  FIG. 1685.

    FIG. 1685.  FIG. 1685.

    图  1  钙钛矿型氧化物的甲苯氧化性能 (a) 以及相应CO2的产率 (b), NO的转化 (c)

    Figure  1  Toluene oxidation performance of perovskite (a) and corresponding CO2 yield (b), NO conversion (c)

    图  2  LaCoO3/MO2 (M=Ce、Zr) 催化剂同时氧化甲苯 (a) 以及相应CO2产率 (b), NO的转化 (c)

    Figure  2  Simultaneous oxidation of toluene (a) and corresponding CO2 yield (b) and NO conversion (c) over LaCoO3/MO2 (M=Ce、Zr) catalysts

    图  3  催化剂的XRD谱图

    Figure  3  XRD patterns of catalysts

    图  4  催化剂的H2-TPR谱图

    Figure  4  H2-TPR spectra of catalysts

    图  5  反应前后催化剂的XPS谱图

    Figure  5  XPS spectra of fresh and used catalysts

    图  6  LaCoO3/CeO2在250 ℃吸附时间原位光谱在甲苯的吸附和甲苯+NO的共吸附(a), O2通入预吸附甲苯和甲苯+NO(b), 甲苯氧化以及加入NO共同氧化(c)和NO氧化以及加入甲苯共同氧化(d)

    Figure  6  DRIFTs spectra recorded at 250 ℃ upon toluene and toluene+NO (a), passing O2 over the toluene-pretreated and toluene+NO-pretreated (b), toluene oxidation and passing NO co-oxidation (c) and NO oxidation and passing toluene co-oxidation (d) on the LaCoO3/CeO2 catalyst

    表  1  催化剂的比表面积

    Table  1  Specific surface area of catalysts

    SampleABET/(m2·g−1)
    CeO2 71.2
    LaCoO3/CeO2 41.6
    ZrO2 51.2
    LaCoO3/ZrO2 37.9
    TiO2 19.4
    LaCoO3/TiO2 7.9
    LaCoO3 6.3
    下载: 导出CSV

    表  2  催化剂的XPS表面元素比值以及结合能

    Table  2  XPS results of surface element ratio and binding energy

    SampleOads/OlatBinding energy E/eVCo3+/Co2+M3+/M4+Atomic/%
    fresh used Oads Olat fresh used fresh used La Co O M
    LaCoO3 2.2 2.6 531.3 528.7 2.1 2.0 15.49 10.51 74.00
    LaCoO3/CeO2 1.7 0.5 531.5 529.3 2.1 2.5 0.14 0.16 10.16 4.89 77.2 7.75
    LaCoO3/ZrO2 0.7 0.4 531.4 529.3 2.0 2.1 10.58 4.56 76.47 8.39
    LaCoO3/TiO2 0.5 0.3 531.5 529.4 2.0 2.1 10.80 4.68 74.59 9.93
    下载: 导出CSV
  • [1] ZHANG K, LI L, HUANG L, WANG Y H, YANG J, HUO J T. The impact of volatile organic compounds on ozone formation in the suburban area of Shanghai[J]. Atmos Environ,2020,23(2):117511.
    [2] 宁汝亮, 刘霄龙, 朱廷钰. 低温SCR脱硝催化剂研究进展[J]. 过程工程学报,2019,19(2):223−234. doi: 10.12034/j.issn.1009-606X.218233

    NING Ru-liang, LIU Xiao-long, ZHU Ting-yu. Research progress of low temperature SCR catalyst for denitrification[J]. Chin J Process Eng,2019,19(2):223−234. doi: 10.12034/j.issn.1009-606X.218233
    [3] 单文坡, 余运波, 张燕, 贺泓. 中国重型柴油车后处理技术研究进展[J]. 环境科学研究,2019,32(10):1672−1677.

    SHEN Wen-po, YU Yun-bo, ZHANG Yan, HE Hong. Research progress of heavy-duty diesel vehicle reprocessing technology in China[J]. Res Environ Sci,2019,32(10):1672−1677.
    [4] 刘希瑞, 郭冬冬, 李家琛, 葛蕴珊, 谭建伟, 吕立群. 国六重型柴油车挥发性有机物排放特性[J]. 中国环境科学,2021,41(7):3131−3137. doi: 10.3969/j.issn.1000-6923.2021.07.015

    LIU Xi-rui, GUO Dong-dong, LI Jia-chen, GE Yun-shan, TAN Jian-wei, LU Li-qun. Emission characteristics of volatile organic compounds from diesel vehicles[J]. Chin Environ Sci,2021,41(7):3131−3137. doi: 10.3969/j.issn.1000-6923.2021.07.015
    [5] 黄海凤, 王庐云, 漆仲华, 卢晗锋. 柴油尾气DOC催化剂Pt-Pd/CeO2的活性和抗硫性[J]. 燃料化学学报,2013,41(11):1401−1408.

    Huang Hai-feng, WANG Lu-yun, QI Zhong-hua, LU Han-feng. Activity and sulfur resistance of Pt-Pd/CeO2 as DOC catalyst for diesel exhaust[J]. J Fuel Chem Technol,2013,41(11):1401−1408.
    [6] IRUSTA S, PINA M P, MENéNDEZ M. Catalytic combustion of volatile organic compounds over La-based perovskites[J]. J Catal,1998,179(2):400−412. doi: 10.1006/jcat.1998.2244
    [7] BARBATO P S, DI SARLI V, LANDI G. High pressure methane catalytic combustion over novel partially coated LaMnO3-based monoliths[J]. Chem Eng J,2015,259:381−390. doi: 10.1016/j.cej.2014.07.123
    [8] SHEN Q, DONG S, LI S, YANG G, PAN X. A Review on the catalytic decomposition of NO by perovskite-type oxides[J]. Catal,2021,11(5):622.
    [9] 沈柳倩. 钙钛矿型催化剂催化燃烧VOCs的活性、抗毒性和稳定性研究[D]. 杭州: 浙江工业大学, 2008.

    SHEN Liu-qian. Study on the activity, anti-toxicity and stability of VOCs catalyzed by perovskite catalyst[D]. Hangzhou: Zhejiang University of Technol, 2008.
    [10] LIU L, SUN J, DING J, ZHANG Y, JIA J P, SUN T H. Catalytic oxidation of VOCs over SmMnO3 perovskites: Catalyst synthesis, change mechanism of active species, and degradation path of toluene[J]. Inorg Chem,2019,58(20):14275−14283.
    [11] WANG Y Q, XUE Y F, ZHAO C C, ZHAO D F, LIU F, WANG K K. Catalytic combustion of toluene with La0.8Ce0.2MnO3 supported on CeO2 with different morphologies[J]. Chem Eng J,2016,300:300−305. doi: 10.1016/j.cej.2016.04.007
    [12] 孙英, 黄妍, 赵威, 苏潜, 张俊丰, 杨柳春. 负载型钙钛矿催化氧化NO及抗SO2性能研究[J]. 燃料化学学报,2014,42(10):1246−1252. doi: 10.3969/j.issn.0253-2409.2014.10.014

    SUN Ying, HUANG Yan, ZHAO Wei, SU Qian, ZHANG Jun-feng, YANG Liu-chun. Study on catalytic Oxidation of NO and SO2 resistance of supported perovskite[J]. J Fuel Chem Technol,2014,42(10):1246−1252. doi: 10.3969/j.issn.0253-2409.2014.10.014
    [13] 单文坡, 刘福东, 贺泓. 柴油车尾气中氮氧化物的催化净化[J]. 科学通报,2014,1(26):2540−2549.

    SHAN Wen-po, LIU Fu-dong, HE Hong. Catalytic purification of nitrogen oxides from diesel vehicle exhaust[J]. Chin Sci Bull,2014,1(26):2540−2549.
    [14] LU P , YE L , YAN X H , CHEN D S, CHEN D Y, CHEN X B, FANG P, CEN C H. Performance of toluene oxidation over MnCe/HZSM-5 catalyst with the addition of NO and NH3[J]. Appl Surf Sci,2021,567:150836.
    [15] PAN H, CHEN Z, MA M, GUO T, LING X, ZHENG Y, HE C, CHEN J. Mutual inhibition mechanism of simultaneous catalytic removal of NOx and toluene on Mn-based catalysts[J]. J Collid Interface Sci,2022,607(2):1189−1200.
    [16] YE L, LU P, PENG Y, LI J, HUANG H. Impact of NOx and NH3 addition on toluene oxidation over MnOx-CeO2 catalyst[J]. J Hazard Mater,2021,416:125939. doi: 10.1016/j.jhazmat.2021.125939
    [17] ZHANG T, QU R Y, SU W K, LI J H. A novel Ce-Ta mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B: Environ,2015,176:338−346.
    [18] NAKAGAWA K, MURATA Y, ADACHI M. Formation and catalytic activity of nanostructured oxides of cerium and cerium-titanium composite prepared by surfactant-assisted mechanism[C]//Proceedings of the Asian Pacific Confederation of Chem Eng Congress Program, 2004.
    [19] LIU Z H, ZHENG Y J, GAO T T, ZHANG L, SUN X F, ZHOU G W. Fabrication of anatase TiO2 tapered tetragonal nanorods with designed 100, 001 and 101 facets for enhanced photocatalytic H2 evolution[J]. Int Hydrogen Energy,2017,42(34):21775−21785. doi: 10.1016/j.ijhydene.2017.07.067
    [20] GOKON N, MURAYAMA H, NAGASAKI A, KADAMA T. Thermochemical two-step water splitting cycles by monoclinic ZrO2-supported NiFe2O4 and Fe3O4 powders and ceramic foam devices[J]. Sol Energy,2009,83(4):527−537. doi: 10.1016/j.solener.2008.10.003
    [21] CHEN H L, WEI G L, LIANG X L, LIU P, XI Y F, ZHU J X. Facile surface improvement of LaCoO3 perovskite with high activity and water resistance towards toluene oxidation: Ca substitution and citric acid etching[J]. Catal Sci Technol,2020,10(17):5829−5839.
    [22] SIM Y, KWON D, AN S, HA J M. Catalytic behavior of ABO3 perovskites in the oxidative coupling of methane[J]. Mol Catal,2020,489(11):110−125.
    [23] LIN X T, LI S J, HE H, WU Z, Wu J L. Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation[J]. Appl Catal B: Environ,2017,(223):91−102.
    [24] 郭良, 刘迪, 杜朕屹, 冯杰, 李文英. ZrO2改性对Ni/SBA-15催化二苯并呋喃加氢脱氧的促进作用研究[J]. 燃料化学学报,2021,49(5):673−683.

    GUO Liang, LIU Di, DU Zheng-yi, FENG Jie, LI Wen-ying. Effect of ZrO2 modification on Ni/SBA-15 catalyzed hydrodeoxidation of dibenzofuran[J]. J Fuel Chem Technol,2021,49(5):673−683.
    [25] KIM S, MAHADIK M A, PERIYASAMY A, CHAE W S, JANG J S. Rational design of interface refining through Ti4+/Zr4+ diffusion/doping and TiO2/ZrO2 surface crowning of ZnFe2O4 nanocorals for photoelectrochemical water splitting dagger[J]. Catal Sci Technol,2021,11(9):3141−3152.
    [26] ZHANG X P, WANG J X, TAN B J, ZHANG N, BAO J J, HE G H. Ce-Co interaction effects on the catalytic performance of uniform mesoporous Cex-Coy catalysts in Hg0 oxidation process[J]. Fuel,2018,226(15):18−26.
    [27] MO S P, ZHANG Q, LI J Q, SUN Y H, REN Q M. Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: Oxygen-Vacancy defect engineering and involved intermediates using in situ DRIFTS[J]. Appl Catal B: Environ,2020,264:118−126.
    [28] YE L M, LU P, CHEN X B, FANG P, PENG Y, LI J H, HUANG H B. The deactivation mechanism of toluene on MnOx-CeO2 SCR catalyst[J]. Appl Catal B: Environ,2020,277:119257. doi: 10.1016/j.apcatb.2020.119257
    [29] YANG W, SU Z, XU Z, YANG W, LI J. Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: Oxygen vacancies and reaction intermediates[J]. Appl Catal B: Environ,2019,260:118−130.
    [30] ZHANG Q, MO S, LI J, SUN Y, YE D. In situ DRIFT spectroscopy insights into the reaction mechanism of CO and toluene co-oxidation over Pt-based catalysts[J]. Catal Sci Technol,2019,9(17):4538−4551.
    [31] YANG Y, XU W Q, WANG J, ZHU T Y. New insight into simultaneous removal of NO and Hg0 on CeO2-modified V2O5/TiO2 catalyst: A new modification strategy[J]. Fuel,2019,249:178−187. doi: 10.1016/j.fuel.2019.03.103
    [32] HUI W, HU C, YING W, YONG K. Performance and mechanism comparison of manganese oxides at different valence states for catalytic oxidation of NO: ScienceDirect[J]. Chem Eng J,2019,361:1161−1172. doi: 10.1016/j.cej.2018.12.159
    [33] RAN A, MA L P, GUO Z Y, LIU H P, YANG J, YIN X, PAN Q H. Effects of the preparation method on the simultaneous catalytic oxidation performances of LaCoO3 perovskites for NO and Hg0[J]. Fuel,2021,305:121617.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  85
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 修回日期:  2022-01-19
  • 录用日期:  2022-01-24
  • 网络出版日期:  2022-04-13
  • 刊出日期:  2022-07-10

目录

    /

    返回文章
    返回