留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HFAU分子筛非骨架铝物种对Brønsted酸性质影响的理论研究

郑健 李强 秦玉才 宋丽娟

郑健, 李强, 秦玉才, 宋丽娟. HFAU分子筛非骨架铝物种对Brønsted酸性质影响的理论研究[J]. 燃料化学学报(中英文), 2022, 50(7): 849-858. doi: 10.19906/j.cnki.JFCT.2022009
引用本文: 郑健, 李强, 秦玉才, 宋丽娟. HFAU分子筛非骨架铝物种对Brønsted酸性质影响的理论研究[J]. 燃料化学学报(中英文), 2022, 50(7): 849-858. doi: 10.19906/j.cnki.JFCT.2022009
ZHENG Jian, LI Qiang, QIN Yu-cai, SONG Li-juan. Impact of the extra-framework aluminum species on the properties of Brønsted acid sites in HFAU zeolites by using thiophene probe molecule: A periodic DFT study[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 849-858. doi: 10.19906/j.cnki.JFCT.2022009
Citation: ZHENG Jian, LI Qiang, QIN Yu-cai, SONG Li-juan. Impact of the extra-framework aluminum species on the properties of Brønsted acid sites in HFAU zeolites by using thiophene probe molecule: A periodic DFT study[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 849-858. doi: 10.19906/j.cnki.JFCT.2022009

HFAU分子筛非骨架铝物种对Brønsted酸性质影响的理论研究

doi: 10.19906/j.cnki.JFCT.2022009
基金项目: 国家自然科学基金(21902068, U20A20120, U1908203)和中国石油创新基金(2020D-5007-0401)资助
详细信息
    通讯作者:

    Tel: 13941350056, E-mail: lsong56@263. net

  • 中图分类号: O643

Impact of the extra-framework aluminum species on the properties of Brønsted acid sites in HFAU zeolites by using thiophene probe molecule: A periodic DFT study

Funds: The project was supported by the National Natural Science Foundation of China (21902068, U20A20120, U1908203) and PetroChina Innovation Foundation (2020D-5007-0401)
  • 摘要: 以HFAU分子筛为研究对象,噻吩为探针分子,采用周期性密度泛函理论的方法探索Al(OH)2+和Al3+非骨架铝物种对Brønsted酸(简称B酸)性质的影响。通过对分子筛酸性位结构特性和电子性质的分析发现,Al3+非骨架铝物种的Lewis酸(简称L酸)强度高于Al(OH)2+非骨架铝物种,两个方向的Al(OH)2+羟基非骨架物种具有相似的电荷性质,即相似的酸强度。电子性质结合去质子化能的结果发现,1-HFAU/Al(OH)2+、2-HFAU/Al(OH)2+和HFAU/Al3+分子筛B酸中心具有相似的酸强度(1045 ± 11)kJ/mol。由此可得Al(OH)2+非骨架铝物种羟基方向的差异及Al(OH)2+和Al3+非骨架铝物种L酸强度的差异不影响B酸中心的酸强度。通过模拟噻吩分子的吸附发现,HFAU/Al3+分子筛中噻吩易于吸附在Al3+位(归因于Al3+中心的强L酸强度)。而HFAU/Al(OH)2+分子筛中的噻吩会优先吸附在B酸位(归因于Al(OH)2+物种自身的结构特性)。此外,Al(OH)2+非骨架铝物种可以对吸附在B酸位的噻吩施加一个弱的相互作用(色散作用)促进噻吩的吸附。吸附的模式依赖Al(OH)2+物种的结构和羟基的方向。此项工作从电子层面探究了主体HFAU分子筛(含非骨架铝)和客体噻吩分子的本征特性,揭示了活性位间的协同作用模式。
  • FIG. 1683.  FIG. 1683.

    FIG. 1683.  FIG. 1683.

    图  1  三斜菱状分子筛单胞模型优化结构

    Figure  1  Optimized structure of HFAU zeolite models

    图  2  分子筛B酸位和L酸位(Al(OH)2+和Al3+)的局部结构

    Figure  2  Local structure of Brønsted and Lewis acid sites (Al(OH)2+ and Al3+) of zeolites

    图  3  分子筛B酸位的去质子化能

    Figure  3  Deprotonation energies of Brønsted acid site (BAS) in zeolites

    图  4  噻吩分子的福井函数图

    Figure  4  Fukui function of thiophene molecule

    图  5  分子筛中重要的分子轨道

    Figure  5  Important molecular orbitals in zeolites

    图  6  分子筛中重要分子轨道的能量

    Figure  6  Energies of important molecular orbitals in zeolites

    图  7  噻吩在HFAU/Al3+分子筛Lewis酸位的吸附能和吸附构型

    Figure  7  Adsorption energies and configuration of thiophene on Lewis site in HFAU/Al3+ zeolites

    图  8  噻吩在HFAU/Al3+分子筛Al3+位点吸附的差分电子密度图

    Figure  8  Electron density difference of thiophene on Al3+ sites in HFAU/Al3+ zeolite

    图  9  噻吩在HFAU/Al(OH)2+分子筛Al(OH)2+位点的吸附构型

    Figure  9  Adsorption mode of thiophene on Al(OH)2+ sites in HFAU/Al(OH)2+ zeolite

    图  10  噻吩在HFAU/Al(OH)2+分子筛B酸和L酸(Al(OH)2+)位点的吸附能

    Figure  10  Adsorption energies of thiophene on BAS and Al(OH)2+ site in HFAU/Al(OH)2+ zeolite

    图  11  噻吩在分子筛B酸位点的吸附构型和差分电子密度

    Figure  11  Adsorption structure and electron density difference of thiophene on BAS in zeolites

    (a), (d): 1-HFAU/Al(OH)2+; (b), (e): 2-HFAU/Al(OH)2+; (c), (f): HFAU/Al3+

    图  12  噻吩在分子筛B酸位点的吸附能

    Figure  12  Adsorption energies of thiophene on BAS in zeolites

    表  1  1-HFAU/Al(OH)2+、2-HFAU/Al(OH)2+和HFAU/Al3+分子筛酸性位的电荷性质

    Table  1  Charge properties of acid sites in 1-HFAU/Al(OH)2+, 2-HFAU/Al(OH)2+ and HFAU/Al3+

    Atoms1-HFAU/Al(OH)2+2-HFAU/Al(OH)2+HFAU/Al3+
    T1 2.03 2.24 2.02
    T2 2.25 2.03 2.21
    T3 2.25 2.25 2.02
    T4 2.03 2.25 2.20
    T5 2.24 2.03 2.02
    T6 2.24 2.24 2.21
    O1 −1.19 −1.21 −1.19
    O2 −1.14 −1.19 −1.20
    O3 −1.19 −1.14 −1.18
    O4 −1.21 −1.19 −1.20
    O5 −1.13 −1.21 −1.19
    O6 −1.21 −1.13 −1.20
    Al7 2.08 2.08 2.08
    O7 −1.11 −1.11 −1.11
    Si7 2.33 2.33 2.33
    H7 0.55 0.55 0.55
    AlEF 1.93 1.93 2.02
    O −1.12 −1.13
    H 0.51 0.51
    下载: 导出CSV

    表  2  噻吩在HFAU/Al3+分子筛Al3+位点吸附前后C–C键和C–S键的变化

    Table  2  Changes of C–C and C–S bonds of thiophene adsorbed on Al3+ site in HFAU/Al3+ zeolite

    Bond d/nm
    Free-TPTP(C)-HFAU/Al3+TP(S)-HFAU/Al3+
    C1–C2 0.138 0137 0.136
    C2–C3 0.143 0.145 0.144
    C3–C4 0.138 0.142 0.136
    C4–S 0.172 0.169 0.176
    C1–S 0.172 0.173 0.176
    下载: 导出CSV
  • [1] SNYDER B, BOLS M L, RHODA H M, PLESSERS D, SCHOONHEYDT R A, SELS B F, SOLOMON E I. Cage effects control the mechanism of methane hydroxylation in zeolites[J]. Science,2021,373:327−331. doi: 10.1126/science.abd5803
    [2] ZU Y, WANG S, HUI Y, NI N, SONG L. Facile fabrication of a superior Cu(I)-NH4Y zeolite adsorbent for improving thiophene adsorption selectivity in the presence of aromatics or olefins[J]. Chem Eng J,2020,401(4):126112.
    [3] ZU Y, GUO Z, ZHENG J, HUI Y, SONG L. Investigation of Cu(I)-Y zeolites with different Cu/Al ratios towards the ultra-deep adsorption desulfurization: Discrimination and role of the specific adsorption active sites[J]. Chem Eng J,2020,380:122−319.
    [4] ZHANG L, QIN Y, ZHANG X, GAO X, SONG L. Further findings on the stabilization mechanism among modified Y zeolite with different rare earth ions[J]. Ind Eng Chem Res,2019,58(31):14016−14025. doi: 10.1021/acs.iecr.9b03036
    [5] BORONAT M, CORMA A. What is measured when measuring acidity in zeolites with probe molecules?[J]. ACS Catal,2019,9(2):1539−1548. doi: 10.1021/acscatal.8b04317
    [6] 丁润东, 祖运, 周传行, 王焕, 莫周胜, 秦玉才, 孙兆林, 宋丽娟. CuNaY分子筛的有效吸附位与其脱硫性能的关联性研究[J]. 燃料化学学报,2018,46(4):451−458. doi: 10.3969/j.issn.0253-2409.2018.04.010

    DING Run-dong, ZU Yun, ZHOU Chuan-hang, WANG Huan, MO Zhou-sheng, QIN Yu-cai, SUN Zhao-lin, SONG L-juan. Insight into the correlation between the effective adsorption sites and adsorption desulfurization performance of CuNaY zeolite[J]. J Fuel Chem Technol,2018,46(4):451−458. doi: 10.3969/j.issn.0253-2409.2018.04.010
    [7] 莫周胜, 秦玉才, 张晓彤, 段林海, 宋丽娟. 环己烯对噻吩在CuY分子筛上吸附的影响机制[J]. 物理化学学报,2017,33(6):1236−1241. doi: 10.3866/PKU.WHXB201703281

    MO Zhou-sheng, QIN Yu-cai, ZHANG Xiao-tong, DUAN Lin-hai, SONG Li-juan. Influencing mechanism of cyclohexene on thiophene adsorption over CuY zeolites[J]. Acta Phys Chim Sin,2017,33(6):1236−1241. doi: 10.3866/PKU.WHXB201703281
    [8] 翟鹏, 郑健, 张锦研, 王焕, 秦玉才, 刘宏海, 宋丽娟. HZSM-5上正己烷酸催化裂解反应路径及机理的研究[J]. 燃料化学学报,2021,49(10):1522−1530. doi: 10.1016/S1872-5813(21)60158-5

    ZHAI Peng, ZHENG Jian, ZHANG Jin-yan, WANG Huan, QIN Yu-cai, LIU Hong-hai, SONG Li-juan. Insight into reaction path and mechanism of catalytic cracking of n-hexane in HZSM-5 zeolites[J]. J Fuel Chem Technol,2021,49(10):1522−1530. doi: 10.1016/S1872-5813(21)60158-5
    [9] LIU C, LI G, HENSEN E J M, PIDKO E A. Relationship between acidity and catalytic reactivity of faujasite zeolite: A periodic DFT study[J]. J Catal,2016,344:570−577. doi: 10.1016/j.jcat.2016.10.027
    [10] PU X, LIU N-W, SHI L. Acid properties and catalysis of USY zeolite with different extra-framework aluminum concentration[J]. Microporous Mesoporous Mater,2015,201:17−23. doi: 10.1016/j.micromeso.2014.08.056
    [11] LIU C, LI G, HENSEN E J M, PIDKO E A. Nature and catalytic role of extraframework aluminum in faujasite zeolite: A theoretical perspective[J]. ACS Catal,2015,5(11):7024−33. doi: 10.1021/acscatal.5b02268
    [12] SCHALLMOSER S, IKUNO T, WAGENHOFER M F, KOLVENBACH R, HALLER G L, SANCHEZ-SANCHEZ M, LERCHER J A. Impact of the local environment of Brønsted acid sites in ZSM-5 on the catalytic activity in n-pentane cracking[J]. J Catal,2014,316:93−102. doi: 10.1016/j.jcat.2014.05.004
    [13] ZHENG J, QIN Y, LI Q, ZHANG L, SONG L. A periodic DFT study of the synergistic mechanisms between extraframework aluminum species and Bronsted acid sites in HY zeolites[J]. Ind Eng Chem Res,2020,59(7):2736−2744. doi: 10.1021/acs.iecr.9b05277
    [14] CARVAJAL R, CHU P-J, LUNSFORD J H. The role of polyvalent cations in developing strong acidity: A study of lanthanum-exchanged zeolites[J]. J Catal,1990,125(1):123−131. doi: 10.1016/0021-9517(90)90083-V
    [15] WANG Q L, GIANNETTO G, GUISNET M. Dealumination of zeolites III. Effect of extra-framework aluminum species on the activity, selectivity, and stability of Y zeolites in n-heptane cracking[J]. J Catal,1991,130(2):471−482. doi: 10.1016/0021-9517(91)90129-R
    [16] MOTA C J A M R L, NOGUEIRA L. Reactivity of zeolite hydroxy groups toward sigma-donor bases[J]. J Chem Soc,1994,90(15):2297−2302.
    [17] YAN Z, MA D, ZHUANG J, LIU X, LIU X, HAN X, BAO X, CHANG F, XU L, LIU Z. On the acid-dealumination of USY zeolite: a solid state NMR investigation[J]. J Mol Catal A: Chem,2003,194(1):153−167.
    [18] KATADA N, KAGEYAMA Y, TAKAHARA K, KANAI T, ARA BEGUM H, NIWA M. Acidic property of modified ultra stable Y zeolite: Increase in catalytic activity for alkane cracking by treatment with ethylenediaminetetraacetic acid salt[J]. J Mol Catal A: Chem,2004,211(1):119−130.
    [19] KATADA N, NAKATA S, KATO S, KANEHASHI K, SAITO K, NIWA M. Detection of active sites for paraffin cracking on USY zeolite by 27Al MQMAS NMR operated at high magnetic field 16 T[J]. J Mol Catal A: Chem,2005,236(1):239−245.
    [20] MOTA C J A, BHERING D L, ROSENBACH N. A DFT study of the acidity of ultrastable Y zeolite: Where is the Brønsted/Lewis acid synergism?[J]. Angew Chem Int Ed,2004,43(23):3050−3053. doi: 10.1002/anie.200353049
    [21] BHERING D L, RAMÍREZ-SOLÍS A, MOTA C J A. A density functional theory based approach to extraframework aluminum species in zeolites[J]. J Phys Chem B,2003,107(18):4342−4347. doi: 10.1021/jp022331z
    [22] LI S, ZHENG A, SU Y, ZHANG H, CHEN L, YANG J, YE C, DENG F. Brønsted/Lewis acid synergy in dealuminated HY zeolite:   A combined solid-state NMR and theoretical calculation study[J]. J Am Chem Soc,2007,129(36):11161−11171. doi: 10.1021/ja072767y
    [23] VAN BOKHOVEN J A, WILLIAMS B A, JI W, KONINGSBERGER D C, KUNG H H, MILLER J T. Observation of a compensation relation for monomolecular alkane cracking by zeolites: the dominant role of reactant sorption[J]. J Catal,2004,224(1):50−59. doi: 10.1016/j.jcat.2004.02.003
    [24] VAN BOKHOVEN J A, TROMP M, KONINGSBERGER D C, MILLER J T, PIETERSE J A Z, LERCHER J A, WILLIAMS B A, KUNG H H. An explanation for the enhanced activity for light alkane conversion in mildly steam dealuminated mordenite: the dominant role of adsorption[J]. J Catal,2001,202(1):129−140. doi: 10.1006/jcat.2001.3265
    [25] GOUNDER R, JONES A J, CARR R T, IGLESIA E. Solvation and acid strength effects on catalysis by faujasite zeolites[J]. J Catal,2012,286:214−23. doi: 10.1016/j.jcat.2011.11.002
    [26] YI X, LIU K, CHEN W, LI J, XU S, LI C, XIAO Y, LIU H, GUO X, LIU S-B, ZHENG A. Origin and structural characteristics of tri-coordinated extra-framework aluminum species in dealuminated zeolites[J]. J Am Chem Soc,2018,140(34):10764−10774. doi: 10.1021/jacs.8b04819
    [27] PERDEW J P, CHEVARY J A, VOSKO S H, JACKSON K A, PEDERSON M R, SINGH D J, FIOLHAIS C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys Rev B,1992,46(11):6671−6687. doi: 10.1103/PhysRevB.46.6671
    [28] PERDEW J P, BURKE K, WANG Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Phys Rev B,1996,54(23):16533−16539. doi: 10.1103/PhysRevB.54.16533
    [29] HAMMER B, HANSEN L B, NØRSKOV J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J]. Phys Rev B,1999,59(11):7413−7421. doi: 10.1103/PhysRevB.59.7413
    [30] PARR R G, YANG W. Density functional approach to the frontier-electron theory of chemical reactivity[J]. ChemInform,1984,15(42):13063.
    [31] JONES A J, IGLESIA E. The strength of Brønsted acid sites in microporous aluminosilicates[J]. ACS Catal,2015,5(10):5741−5755. doi: 10.1021/acscatal.5b01133
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  152
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-02
  • 修回日期:  2022-01-16
  • 录用日期:  2022-01-25
  • 网络出版日期:  2022-02-12
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回