留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锌-钴氰化络合物催化剂的改性及其在聚醚碳酸酯二元醇合成中的应用

吴冬凡 张源萍 李其峰 亢茂青 王军威

吴冬凡, 张源萍, 李其峰, 亢茂青, 王军威. 锌-钴氰化络合物催化剂的改性及其在聚醚碳酸酯二元醇合成中的应用[J]. 燃料化学学报(中英文), 2022, 50(8): 1041-1050. doi: 10.19906/j.cnki.JFCT.2022016
引用本文: 吴冬凡, 张源萍, 李其峰, 亢茂青, 王军威. 锌-钴氰化络合物催化剂的改性及其在聚醚碳酸酯二元醇合成中的应用[J]. 燃料化学学报(中英文), 2022, 50(8): 1041-1050. doi: 10.19906/j.cnki.JFCT.2022016
WU Dong-fan, ZHANG Yuan-ping, LI Qi-feng, KANG Mao-qing, WANG Jun-wei. Modification of Zn-Co DMC catalyst and its application in the synthesis of poly(ether-carbonate) polyols[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1041-1050. doi: 10.19906/j.cnki.JFCT.2022016
Citation: WU Dong-fan, ZHANG Yuan-ping, LI Qi-feng, KANG Mao-qing, WANG Jun-wei. Modification of Zn-Co DMC catalyst and its application in the synthesis of poly(ether-carbonate) polyols[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1041-1050. doi: 10.19906/j.cnki.JFCT.2022016

锌-钴氰化络合物催化剂的改性及其在聚醚碳酸酯二元醇合成中的应用

doi: 10.19906/j.cnki.JFCT.2022016
基金项目: 山西省重点研发计划 (201903D121104)资助
详细信息
    通讯作者:

    Tel:13934558196, E-mail:liqf@sxicc.ac.cn

  • 中图分类号: O633.4

Modification of Zn-Co DMC catalyst and its application in the synthesis of poly(ether-carbonate) polyols

Funds: The project was supported by Key Research and Development Program of Shanxi Province (201903D121104)
  • 摘要: 双金属氰化物(double mental cyanide,DMC)是一种用于二氧化碳与环氧丙烷(PO)共聚反应的催化剂。DMC催化剂是具有晶体结构的有机金属配合物,其催化活性与结晶度密切相关。加入配体、共配体能够破坏立方晶体结构、增加无定形态结构从而降低结晶度。研究证明,以叔丁醇为配体的DMC催化剂活性较高,但是对共配体的使用则鲜有报道。本研究使用不同共配体(Span80、Tween80、D400、D2000)对DMC催化剂改性以达到两个目的:一是降低结晶度,提高催化剂活性;二是减小催化剂粒径。此外,利用PO与CO2的共聚反应对催化剂性能进行考察。结果表明,使用D2000作为共配体改性后的DMC+D2000催化剂,催化活性为1547 g/gcat,聚合产物中碳酸酯单元占聚合部分的质量分数为25.3%,选择性为92.1%。
  • FIG. 1774.  FIG. 1774.

    FIG. 1774.  FIG. 1774.

    图  1  DMC催化剂反应机理[12]

    Figure  1  Reaction mechanism of DMC catalyst[12]

    图  2  共配体存在下DMC催化剂形成过程

    Figure  2  DMC catalyst formation process in the presence of co-complexing agent

    图  3  不同共配体改性的DMC催化剂的FT-IR谱图

    Figure  3  FT-IR spectra of DMC catalysts modified by different co-complexing agents

    a: DMC; b: DMC+S80; c: DMC+T80; d: DMC+D2000; e: DMC+D400

    图  4  不同共配体改性催化剂的XRD谱图

    Figure  4  XRD patterns of catalysts modified by different co-complexing agents

    a: DMC; b: DMC+S80; c: DMC+T80; d: DMC+D2000; e: DMC+D400

    图  5  不同共配体改性的催化剂粒径分布

    Figure  5  Mean volume diameter distribution of catalysts modified by different co-complexing agents

    ▼: DMC+S80; ■: DMC+T80; ▲: DMC+D2000; ●: DMC+D400; ◆: DMC

    图  6  不同共配体改性的催化剂SEM照片

    Figure  6  SEM images of catalysts modified by different co-complexing agents

    图  7  不同共配体改性的催化剂TG和DTG曲线

    Figure  7  TG and DTG curves of DMC catalysts modified by different co-complexing agents

    图  8  聚醚碳酸酯二元醇的 1H NMR(a)和GPC(b)谱图

    Figure  8  1H NMR spectra (a) and GPC spectra (b) of poly(ether-carbonate) polyols

    a: DMC; b: DMC+S80; c: DMC+T80; d: DMC+D2000; e: DMC+D400

    表  1  共配体的种类及结构

    Table  1  Types and structures of co-complexing agents

    TypesMnFunctional groupSolubilityStructure
    Span80428–OH+
    Tween801365–OH+++
    D400400–NH2++
    D20002000–NH2
    Solubility:Degree of dissolution of the sample in water,(+):soluble;(–):insouble
    下载: 导出CSV

    表  2  不同条件下CO2与 PO共聚反应

    Table  2  Copolymerization of PO and CO2 catalyzed under different conditions

    EntryCTA/PO (mass ratio)Reaction period/ht/℃p/MPaMna/(g·mol−1)CU' b/mol%Selectivityc s/%
    10.2520802105819.094.7
    20.2512802120423.891.8
    30.1612802210921.292.2
    40.251270279114.195.4
    50.2512902182025.282.7
    60.25121002191515.182.9
    7 [18]04800.567000-
    8 [25]0.04810803.8605032.05
    The Zn-Co double mental cyanide catalyst was used in copolymerization; entry1 is one-step method, entries 2–6 are continuous method;
    a: Mn=56.1*1000f /Qv; b: the molar fraction of carbonate linkages in the produced polymer; [carbonate]/([carbonate] + [ether]) ratio determined by 1H NMR spectra;
    c: the weight percentage of poly(ether-carbonate) polyols in the total crude product
    下载: 导出CSV

    表  3  不同催化剂作用的CO2与 PO共聚反应a

    Table  3  Copolymerization of PO and CO2 catalyzed by different catalysts a

    EntryCatalystMnb/(g·mol−1)${f}_{ {\rm{CO} }_2}^{\prime }$c/mol/%CU' d/mol/%Selectivitye s/%PDIfYieldg/(g·${\rm{g}}^{-1}_{\rm{cat}} $)
    1DMC120419.223.891.81.241235
    2DMC+S8060332.942.987.41.22646
    3DMC+T80114816.619.895.01.271079
    4DMC+D2000167920.125.392.11.301547
    5DMC+D40080334.853.389.41.50934
    a: Reaction conditions: W(catalyst)=40 mg, CTA/PO (mass ratio)=0.25; stage of activation: t1=120 ℃; the stage of adding ingredients: t2=80 ℃, p2=2.0 MPa, t2=10 h; b: Mn=56.1*1000f /Qv; c: the molar fraction of carbon dioxide insertion in the produced polymer; d: the molar fraction of carbonate linkages in the produced polymer; e: the weight percentage of poly(ether-carbonate) polyols in the total crude product; f: Polydispersity index determined by gel permeation chromatograph; g: Yield/% = mPO/ mcat
    下载: 导出CSV

    表  4  不同催化剂催化CO2与 PO共聚反应对比

    Table  4  Comparison of different catalysts for the copolymerization of PO and CO2

    No. co-complexing
    agent
    CTA/PO/DMC
    (g/g/mg)
    CTAt(℃)/
    p(MPa)
    Mna/
    (g·mol−1)
    CU' b/
    mol%
    Selectivityc
    s/%
    PDId
    1[17]47/76/100PPG40080/210202594.91.06
    2[25]2.5/25.6/10H2O80/5152005879.52.3
    3[28]13/83/10BPA95/4200031872.88
    4[29]PEG100030/90/41PPG725105/226609.499.65.97
    5D200030/120/60PPG40080/216792592.11.3
    a: Mn=56.1*1000f/ Qv; b: the molar fraction of carbon dioxide insertion in the produced polymer; c: the molar fraction of carbonate linkages in the produced polymer; d: the weight percentage of poly(ether-carbonate) polyols in the total crude product
    下载: 导出CSV
  • [1] HEPBURN C, ADLEN E, BEDDINGTON J, CARTER E, WILLIAMS C. Utilization and removal[J]. Nature,2019,575(7781):87−97. doi: 10.1038/s41586-019-1681-6
    [2] YAASHIKAA P R, NTHIL KUMAR P, VARJANI S J, SARAVANAN A. A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products[J]. J CO2 Util,2019,33:131−147. doi: 10.1016/j.jcou.2019.05.017
    [3] DAS S, PEREZ-RAMIREZ J, GONG J L, DEWANGAN N, HIDAJAT K, GATES B C, KAWI S. Core-shell structured catalysts for thermocatalytic, photocatalytic and electrocatalytic conversion of CO2[J]. Chem Soc Rev,2020,49:2937−3004. doi: 10.1039/C9CS00713J
    [4] ZHU Y Q, ROMAIN C, WILLIAMS C K. Sustainable polymers from renewable resources.[J]. Nature,2016,540(7633):354−362. doi: 10.1038/nature21001
    [5] PATIL N, BHOOPATHI S, CHIDARA V, HADJICHRISTIDIS N, GNANOU Y, FENG X S. Recycling a borate complex for synthesis of polycarbonate polyols: Towards an environmentally friendly and cost-effective process[J]. Chem Sus Chem,2020,13(18):5080−5087. doi: 10.1002/cssc.202001395
    [6] PRAKASH A, RAVINDRA G, UMAKANT P, JOON H B, SUNG C H. Carbon dioxide-based polyols as sustainable feedstock of thermoplastic polyurethane for corrosion-resistant metal coating[J]. ACS Sustainable Chem Eng,2017,5(5):3871−3881. doi: 10.1021/acssuschemeng.6b03046
    [7] KEMBER M R, BUCHARD A, WILLIAMS C K. Catalysts for CO2/epoxide copolymerisation[J]. Chem Commun,2011,47(1):141−163. doi: 10.1039/C0CC02207A
    [8] WEI R J, ZHANG X H, DU B Y, FAN Z Q. Selective production of poly(carbonate-co-ether) over cyclic carbonate for epichlorohydrin and CO2 copolymerization via heterogeneous catalysis of Zn-Co (III) double metal cyanide complex[J]. Polymer,2013,54(23):6357−6362. doi: 10.1016/j.polymer.2013.09.040
    [9] 秦玉升, 付双滨, 王献红, 王佛松. 一种具有高伯羟基含量的聚(碳酸酯-醚)多元醇组合物及其制备方法: 中国, CN107868239A[P]. 2018-04-03

    QIN Yu-Sheng, FU Shuang-Bin, WANG Xian-Hong, WANG Fu-Song. Synthesis of high primary hydroxyl content poly(carbonate-ether) polyols: China, CN107868239A[P]. 2018-04-03.
    [10] WANG J, ZHANG H M, MIAO Y Y, QIAO L J, WANG X H, WANG F S. UV-curable waterborne polyurethane from CO2-polyol with high-hydrolysis resistance[J]. Polymer,2016,100:219−226. doi: 10.1016/j.polymer.2016.08.039
    [11] WANG J, ZHANG H M, MIAO Y Y, QIAO L J, WANG X H, WANG F S. Waterborne polyurethanes from CO2 based polyols with comprehensive hydrolysis/oxidation resistance[J]. Green Chem,2016,18(2):524−530. doi: 10.1039/C5GC01373A
    [12] 安娜. 二氧化碳基聚醚碳酸酯二元醇催化合成及其应用性能研究[D]. 北京: 中国科学院大学, 2019.

    AN Na. The catalytic synthesis and application properties study of carbon dioxide-based poly(ether-carbonate) polyols[D]. Beijing. Chinese Academy of Science, 2019
    [13] 胡曦华. 改性Zn-Co(Ⅲ)DMC催化环氧烷烃开环聚合制备聚醚多元醇的研究[D]. 大连: 大连理工大学, 2016.

    HU Xi-Hua. Research on synthesizing polyether polyol through alkylene oxide ring opening polymerization catalyzed by modified Zn-Co DMC[D]. Dalian: Dalian University of Technology, 2016
    [14] GU Y, DONG X. Novel application of double metal cyanide in the synthesis of hyperbranched polyether polyols[J]. Des Monomers Polym,2013,16(1):72−78. doi: 10.1080/15685551.2012.705492
    [15] SEBASTIAN J, DARBHA S. Structure-induced catalytic activity of Co-Zn double-metal cyanide complexes for terpolymerization of propylene oxide, cyclohexene oxide and CO2[J]. RSC Adv,2015,5(24):18196−18203. doi: 10.1039/C5RA00299K
    [16] GRUSZKA W, GARDEN J A. Advances in heterometallic ring-opening (co)polymerization catalysis[J]. Nat Commun,2021,12(1):3252−3265. doi: 10.1038/s41467-021-23192-y
    [17] AN N, LI Q F, YIN N, KANG M Q, WANG J W. Effects of addition mode on Zn-Co double metal cyanide catalyst for synthesis of oligo(propylene-carbonate)diols[J]. Appl Organomet Chem,2018,32(11):4509−4509. doi: 10.1002/aoc.4509
    [18] TRAN C H, KIM S A, MOON Y, LEE Y, RYU H M, BAIK J H, HONR S C. Effect of dicarbonyl complexing agents on double metal cyanide catalysts toward copolymerization of CO2 and propylene oxide[J]. Catal Today,2020,375(1):335−342.
    [19] MENG Q Y, CHENG R H, LI J J, LIU B P. Copolymerization of CO2 and propylene oxide using ZnGA/DMC composite catalyst for high molecular weight poly(propylene carbonate)[J]. J CO2 Util,2016,16:86−96. doi: 10.1016/j.jcou.2016.06.011
    [20] STAHL S F, LUINSTRA G A. MC-mediated copolymerization of CO2 and PO-mechanistic aspects derived from feed and polymer composition[J]. Catalysts,2020,10(9):1066. doi: 10.3390/catal10091066
    [21] GREFE L, E MEJIA. Earth-abundant bimetallic and multimetallic catalysts for Epoxide/CO2 ring-opening copolymerization[J]. Tetrahedron,2021,98(8):132433.
    [22] ZHANG M, YANG Y, CHEN L B. Preparation of crown ether complexing highly active double metal cyanide catalysts and copolymerization of CO2 and propylene oxide[J]. Chin J Catal,2015,36(8):1304−1311. doi: 10.1016/S1872-2067(15)60868-3
    [23] WANG H F, LIU G H, HAO X J, LI M H, YANG L J, ZHANG H X. Rich NH2 mesoporous g-C3N4 nanosheets efficient for cycloaddition of CO2 to epoxides without solvent and Co-catalyst[J]. ChemistrySelect,2021,6(15):3712−3721. doi: 10.1002/slct.202100308
    [24] LEE I K, JU Y H, CAO C, PARK D W, HA C S, KIM I. Effect of complexing agents of double metal cyanide catalyst on the copolymerization of cyclohexene oxide and carbon dioxide[J]. Catal Today,2009,148(3-4):389−397. doi: 10.1016/j.cattod.2009.07.073
    [25] ZHANG X H, WEI R J, SUN X K, ZHANG J F, DU B Y. Selective copolymerization of carbon dioxide with propylene oxide catalyzed by a nanolamellar double metal cyanide complex catalyst at low polymerization temperatures[J]. Polymer,2011,52(24):5494−5502. doi: 10.1016/j.polymer.2011.09.040
    [26] CYRIAC A, LEE S H, VARGHESE J K, PARK E S, LEE B Y. Immortal CO2/propylene oxide copolymerization: Precise control of molecular weight and architecture of various block copolymers[J]. Macromolecules,2010,43(18):7398−7401. doi: 10.1021/ma101259k
    [27] SULLEY G S, GREGORY G L, CHEN T, TROTT G, TERRILL N J, WIILLIAMS C K. Switchable catalysis improves the properties of CO2-derived polymers: Poly(cyclohexene carbonate-b-ε-decalactone-b-cyclohexene carbonate) adhesives, elastomers, and toughened plastics[J]. J Am Chem Soc,2020,142(9):4367−4378. doi: 10.1021/jacs.9b13106
    [28] MA K, BAI Q, ZHANG L, LIU B P. Synthesis of flame-retarding oligo(carbonate-ether) diols via double metal cyanide complex-catalyzed copolymerization of PO and CO2 using bisphenol A as a chain transfer agent[J]. RSC Adv,2016,6(54):48405−48410. doi: 10.1039/C6RA07325E
    [29] MARIA P D, CRISTINA A, ADRIAN F, TAPIO S, JOSE R G. Effect of Zn/Co initial preparation ratio in the activity of double metal cyanide catalysts for propylene oxide and CO2 copolymerization[J]. Eur Polym J,2017,88:280−291. doi: 10.1016/j.eurpolymj.2017.01.028
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  364
  • HTML全文浏览量:  87
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 修回日期:  2022-02-21
  • 录用日期:  2022-03-04
  • 网络出版日期:  2022-03-16
  • 刊出日期:  2022-08-26

目录

    /

    返回文章
    返回