留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni含量对NiO/CeO2催化剂催化CO氧化性能的影响

金石山 张大山 冯旭浩 张财顺 庆绍军 张磊 高志贤

金石山, 张大山, 冯旭浩, 张财顺, 庆绍军, 张磊, 高志贤. Ni含量对NiO/CeO2催化剂催化CO氧化性能的影响[J]. 燃料化学学报(中英文), 2022, 50(8): 1034-1040. doi: 10.19906/j.cnki.JFCT.2022019
引用本文: 金石山, 张大山, 冯旭浩, 张财顺, 庆绍军, 张磊, 高志贤. Ni含量对NiO/CeO2催化剂催化CO氧化性能的影响[J]. 燃料化学学报(中英文), 2022, 50(8): 1034-1040. doi: 10.19906/j.cnki.JFCT.2022019
JIN Shi-shan, ZHANG Da-shan, FENG Xu-hao, ZHANG Cai-shun, QING Shao-jun, ZHANG Lei, GAO Zhi-xian. Effect of Ni content on catalytic oxidation of CO over NiO/CeO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1034-1040. doi: 10.19906/j.cnki.JFCT.2022019
Citation: JIN Shi-shan, ZHANG Da-shan, FENG Xu-hao, ZHANG Cai-shun, QING Shao-jun, ZHANG Lei, GAO Zhi-xian. Effect of Ni content on catalytic oxidation of CO over NiO/CeO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1034-1040. doi: 10.19906/j.cnki.JFCT.2022019

Ni含量对NiO/CeO2催化剂催化CO氧化性能的影响

doi: 10.19906/j.cnki.JFCT.2022019
基金项目: 国家自然科学基金(21673270)和辽宁省教育厅科学研究经费项目(L2019012)资助
详细信息
    通讯作者:

    E-mail: lnpuzhanglei@163.com

    gaozx@lnpu.edu.cn

  • 中图分类号: O643

Effect of Ni content on catalytic oxidation of CO over NiO/CeO2 catalyst

Funds: The project was supported by the National Natural Science Foundation of China (21673270) and the Scientific Research Funds project of Education Department of Liaoning Province (L2019012)
  • 摘要: 以CeO2为载体,Ni为活性组分,采用球磨法制备了低温条件下性能较好的CO氧化NiO/CeO2催化剂。通过XRD、BET、H2-TPR、XRF和XPS等技术对催化剂进行了表征,考察了镍含量对催化剂结构和CO低温氧化性能的影响。结果表明,不同Ni/Ce比主要影响催化剂表面晶格氧空位的数量以及活性组分和载体之间的相互作用。其中,Ni/Ce物质的量比为1∶9时,催化剂表面氧空位数量较多,因此,表现出优良的催化性能。在反应温度为200 ℃、氧过量系数为5、气体总空速为60000 mL/(gcat·h)的条件下,CO转化率为99.2%。此外,与传统液相制备催化剂技术相比,球磨法具有污染小、成本低、易操作等特点,有利于节约能源。
  • FIG. 1773.  FIG. 1773.

    FIG. 1773.  FIG. 1773.

    图  1  NiO/CeO2催化剂和参比样的XRD谱图

    Figure  1  XRD patterns of the NiO/CeO2 catalysts and reference sample a: CeO2; b: NC-0.5; c: NC-1; d: NC-2

    图  2  NiO/CeO2催化剂N2吸附-脱附等温线

    Figure  2  N2 adsorption desorption and desorption isotherms of NiO/CeO2 catalysts a: CeO2; b: NC-0.5; c: NC-1; d: NC-2

    图  3  NiO/CeO2催化剂的H2-TPR谱图

    Figure  3  H2-TPR spectra of NiO/CeO2 catalysts a: CeO2; b: NC-0.5; c: NC-1; d: NC-2

    图  4  NiO/CeO2催化剂的Ce 3d XPS谱图

    Figure  4  Ce 3d XPS spectra of the NiO/CeO2 catalysts a: CeO2; b: NC-0.5; c: NC-1; d: NC-2

    图  5  NiO/CeO2催化剂的O 1s XPS谱图

    Figure  5  O 1s XPS spectra of the NiO/CeO2 catalysts a: 0.5-NiO/CeO2; b: 1-NiO/CeO2; c: 2-NiO/CeO2

    图  6  NiO/CeO2催化剂的Ni 2p XPS谱图

    Figure  6  Ni 2p XPS spectra of the NiO/CeO2 catalysts a: 0.5-NiO/CeO2; b: 1-NiO/CeO2; c: 2-NiO/CeO2

    图  7  NiO/CeO2催化剂的CO转化率

    Figure  7  CO conversion diagram of NiO/CeO2 catalyst

    a: CeO2; b: NC-0.5; c: NC-1; d: NC-2; e: complete conversion

    表  1  NiO/CeO2催化剂的XRD分析

    Table  1  XRD data of NiO/CeO2 catalysts

    SampleCell parameter/nmCrystallite size of CeO2/nm
    CeO2 0.5410 22.0
    NC-0.5 0.5408 21.9
    NC-1 0.5399 20.9
    NC-2 0.5409 20.8
    下载: 导出CSV

    表  2  NiO/CeO2催化剂的BET分析

    Table  2  BET analysis of NiO/CeO2 catalyst

    SampleSBET/(m2·g−1)Pore size/nm
    CeO2 24.3 9.49
    CeO2 34.6 9.46
    NC-0.5 36.1 12.85
    NC-1 34.5 11.90
    NC-2 32.3 9.18
    下载: 导出CSV

    表  3  NiO/CeO2催化剂的Ni元素含量

    Table  3  Ni element content of NiO/CeO2 catalyst

    SampleTarget content of Ni/%Ni content/%a
    CeO2
    NC-0.52.202.08
    NC-14.063.76
    NC-29.809.85
    a: determined by XRF experiment
    下载: 导出CSV

    表  4  NiO/CeO2催化剂还原峰位置

    Table  4  Location of reduction peak of NiO/CeO2 catalyst

    SampleLocation of reduction peak /℃
    αβγε/εk/k
    CeO2 500 833
    NC-0.5 182 246 294 453 831
    NC-1 180 223 294 455 824
    NC-2 187 249 327 456 830
    下载: 导出CSV

    表  5  NiO/CeO2催化剂中晶格氧含量

    Table  5  Lattice oxygen content in NiO/CeO2 catalyst

    CatalystOlat/(Olat+Oads)/%
    0.5-NiO/CeO260
    1-NiO/CeO277
    2-NiO/CeO255
    下载: 导出CSV

    表  6  NC-1催化剂与同类文献的转化率对比

    Table  6  Comparison of conversion rate between NC-1 catalyst and similar literatures

    Samplet/℃GHSV(/mL·gcat−1·h−1)λConversion/%
    NC-120060000599.2
    Meso-Ni0.1Ce[16]2001200002180.0
    Ni-CeO2 NRs[15]200288001010.0
    Ce-Ni[14]2003000028100.0
    下载: 导出CSV
  • [1] SETH D, NIU M. Hydrogen futures: Toward a sustainable energy system[J]. Int J Hydrogen Energy,2002,27(3):235−264. doi: 10.1016/S0360-3199(01)00131-8
    [2] 王子良, 李瑞军, 解东来. 一种CO优先氧化装置的实验研究[J]. 化工进展,2012,31(3):523−527.

    WANG Zi-liang, LI Rui-jun, XIE Dong-lai. An experimental study on a CO preferential oxidation reactor[J]. J Energy Chem,2012,31(3):523−527.
    [3] PATRICK M, DAMON H. Hydrogen's role in an uncertain energy future[J]. Int J Hydrogen Energy,2009,34(1):31−39. doi: 10.1016/j.ijhydene.2008.10.060
    [4] AGUILA G, GRACIS F, AMYA P. CuO and CeO2 catalysts supported on Al2O3, ZrO2 and SiO2 in the oxidation of CO at low temperature[J]. Appl Catal A: Gen,2008,343(1):16−24.
    [5] HAN S W, KIM D H, JEONG M G, PARK K J, KIM Y D. CO oxidation catalyzed by NiO supported on mesoporous Al2O3 at room temperature[J]. Chem Eng J,2016,283(1):992−998.
    [6] LU R, HE L, WANG Y, GAO X Q, LI W C. Promotion effects of nickel-doped Al2O3-nanosheet-supported Au catalysts for CO oxidation[J]. Chin J Catal,2020,41(2):350−356. doi: 10.1016/S1872-2067(19)63439-X
    [7] BANSMANN J, KUCEROVA G, ABDEL-MAGEED A M, EL-MOEMEN A A, BEHM R J. Influence of re-activation and ongoing CO oxidation reaction on the chemical and electronic properties of Au on Au/CeO2 catalyst: A XANES study at the Au Ledge[J]. J Electron Spectr,2017,220(34):86−90.
    [8] KAST P, FRIEDRICH M, GIRGSDIES F, KRÖHNERT J, TESCHNER D, LUNKENBEIN T, BEHRENS M, SCHLöGL R. Strong metal support interaction and alloying in Pd/ZnO catalysts for CO oxidation[J]. Catal Today,2015,260(62):21−31.
    [9] LEUNG E, SHIMIZU A, BARMAK K, FARRAUTO R. Copper oxide catalyst supported on niobium oxide for CO oxidation at low temperatures[J]. Catal Commun,2017,97(87):42−46.
    [10] WANG Y Z, ZHAO Y X, GAO C G, LIU D S. Preparation and catalytic performance of Co3O4 catalysts for low-temperature CO oxidation[J]. Catal Lett,2007,116(3/4):136−142. doi: 10.1007/s10562-007-9099-4
    [11] LEE J, RYOU Y, KIM J, CHAN X J, KIM T, KIM D H. Influence of the defect concentration of ceria onthe Pt dispersion and the CO oxidation activity of Pt/CeO2[J]. J Phys Chem C,2018,122(9):4972−4983. doi: 10.1021/acs.jpcc.8b00254
    [12] LU R, HE L, WANG Y, GAO X Q, LI W C. Promotion effects of nickel-doped Al2O3-nanosheet-supported Au catalysts for CO oxidation[J]. Chin J Catal,2019,02(12):350−358.
    [13] SUN J, ZHANG L, GE C, TANG C, DONG L. Comparative study on the catalytic CO oxidation properties of CuO/CeO2 catalysts prepared by solid state and wet impregnation[J]. Chin J Catal,2014,35(8):1347−1358.
    [14] 李树娜, 石奇, 李小军, 方振华, 孙平, 周跃花, 张杏梅, 杨晓慧. 金属掺杂Ce-M(M=Fe、Ni和Cu)催化剂的CO低温氧化性能研究[J]. 燃料化学学报,2017,45(6):707−713. doi: 10.3969/j.issn.0253-2409.2017.06.009

    LI Shu-na, SHI Qi, LL Xiao-jun, FANG Zhen-hua, SUN Ping, ZHOU Yue-hua, ZHANG Xing-mei, YANG Xiao-hui. Low temperature CO oxidation over the ceria oxide catalysts doped with Fe, Ni and Cu[J]. J Fuel Chem Technol,2017,45(6):707−713. doi: 10.3969/j.issn.0253-2409.2017.06.009
    [15] DESHETTI J, VENKATASWAMY P, VICTORIA E C, REDDY B M, BHARGAVA S K. Low-temperature CO oxidation over manganese, cobalt, and nickel doped CeO2 nanorods[J]. RSC,2016,6(84):80541−80547.
    [16] TANGA C J, LI J C, YAO X J, SUN J F, CAO Y, ZHANG L, GAO F, DENG Y, DONG L. Mesoporous NiO-CeO2 catalysts for CO oxidation: Nickel content effect and mechanism aspect[J]. Appl Catal A: Gen,2015,494(1):77−86.
    [17] 肖卫明. 过渡金属催化剂的球磨法制备及其催化CO氧化性能研究[D]. 南昌: 南昌大学研究生院, 2018.

    XIAO Wei-ming. Transition metal catalyst prepared by ball milling and their activities for the CO oxidation[D]. Nanchang: Graduate School of Nanchang University, 2018.
    [18] ZHENG Y, LI K, WANG H, ZHU X, WEI Y G, ZHEBG M, WANG Y H. Enhanced activity of CeO2-ZrO2 solid solutions for chemical-looping reforming of methane via tuning the macroporous structure[J]. Energy Fuels,2016,30(1):638−647. doi: 10.1021/acs.energyfuels.5b02151
    [19] ASHOK J, ANG M. L, KAWI S. Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: Influence of preparation methods[J]. Catal Today,2017,281(2):304−311.
    [20] MAHAMMADUNNIS S, REDDY P M K, LINGAIAH N, SUBRAHMANYAM C. NiO/Ce1-xNixOy as an alternative to noble metal catalysts for CO oxidation[J]. Catal Sci Technol,2013,3(3):730−736. doi: 10.1039/C2CY20641B
    [21] AHMED S, KRUMPELT M. Hydrogen from hydrocarbon fuels for fuel cells[J]. Int J Hydrogen Energy,2001,26(4):291−301. doi: 10.1016/S0360-3199(00)00097-5
    [22] SANGSEFIDI F S, SALAVATI-NIASARI M, SHABANI-NOOSHABADI M. Characterization of hydrogen storage behavior of the as-synthesized p-type NiO/n-type CeO2 nanocomposites by carbohydrates as a capping agent: The influence of morphology[J]. Int J Hydrogen Energy,2018,43(1):14557−14568.
    [23] LI J, ZHU P F, ZHOU R X. Effect of the preparation method on the performance of CuO-MnOx-CeO2 catalysts for selective oxidation of CO in H2-rich streams[J]. J Power Sources,2011,196(22):9590−9598. doi: 10.1016/j.jpowsour.2011.07.052
    [24] LIU L J, YAO Z J, DENG Y, GAO F, LIU B, DONG L. Morphology and crystal‐plane effects of nanoscale ceria on the activity of CuO/CeO2 for NO reduction by CO[J]. ChemCatChem,2011,3(6):978−989. doi: 10.1002/cctc.201000320
    [25] 闫宁, 周安宁, 张亚刚, 杨志远, 贺新福, 张亚婷. CeO2的形貌特征对Ni/CeO2催化剂CO甲烷化性能的影响[J]. 燃料化学学报,2020,48(4):466−475. doi: 10.3969/j.issn.0253-2409.2020.04.010

    YAN Ning, ZHOU An-ning, ZHANG Ya-gang, YANG Zhi-yuan, HE Xin-fu, ZHANG Ya-ting. Morphologic effect of CeO2 on the catalytic performance of Ni /CeO2 in CO methanation[J]. J Fuel Chem Technol,2020,48(4):466−475. doi: 10.3969/j.issn.0253-2409.2020.04.010
    [26] LIN H K, CHIU H C, HSIN C T, CHIEN S H, WANG C B. Synthesis characterization and catalytic oxidation of carbon monoxide over cobalt oxide[J]. Catal Lett,2003,88(1):169−174.
    [27] LUSTEMBERG P G, FERIA L, GANDUGLIA-PIROVANO M V. Single Ni sites supported on CeO2(111) reveal cooperative effects in the water-gas shift reaction[J]. J Phys Chem,2018,3(1):2−28.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  482
  • HTML全文浏览量:  268
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-25
  • 修回日期:  2022-02-08
  • 录用日期:  2022-03-15
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2022-08-26

目录

    /

    返回文章
    返回