留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CoNi双金属改性石墨相氮化碳的制备及光催化性能的研究

孙有为 王曦 周峰 马会霞 苑兴洲 胡绍争 张健

孙有为, 王曦, 周峰, 马会霞, 苑兴洲, 胡绍争, 张健. CoNi双金属改性石墨相氮化碳的制备及光催化性能的研究[J]. 燃料化学学报(中英文), 2022, 50(11): 1449-1457. doi: 10.19906/j.cnki.JFCT.2022031
引用本文: 孙有为, 王曦, 周峰, 马会霞, 苑兴洲, 胡绍争, 张健. CoNi双金属改性石墨相氮化碳的制备及光催化性能的研究[J]. 燃料化学学报(中英文), 2022, 50(11): 1449-1457. doi: 10.19906/j.cnki.JFCT.2022031
SUN You-wei, WANG Xi, ZHOU Feng, MA Hui-xia, YUAN Xing-zhou, HU Shao-zheng, ZHANG Jian. CoNi bimetallic co-catalyst decorated graphitic-phase carbon nitride preparation and photocatalytic properties[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1449-1457. doi: 10.19906/j.cnki.JFCT.2022031
Citation: SUN You-wei, WANG Xi, ZHOU Feng, MA Hui-xia, YUAN Xing-zhou, HU Shao-zheng, ZHANG Jian. CoNi bimetallic co-catalyst decorated graphitic-phase carbon nitride preparation and photocatalytic properties[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1449-1457. doi: 10.19906/j.cnki.JFCT.2022031

CoNi双金属改性石墨相氮化碳的制备及光催化性能的研究

doi: 10.19906/j.cnki.JFCT.2022031
基金项目: 辽宁省科技厅面上项目 (2021-MS-308)和辽宁省教育厅项目 (L2020016)资助
详细信息
    通讯作者:

    E-mail: hushaoshenglnpu@163.com

    zhangjian2011@lnpu.edu.cn

  • 中图分类号: TQ028.8

CoNi bimetallic co-catalyst decorated graphitic-phase carbon nitride preparation and photocatalytic properties

Funds: The project was supported by the General Program of Department of Science and Technology of Liaoning Province (2021-MS-308) and the project of Education Department of Liaoning Province (L2020016)
  • 摘要: 采用简单的化学还原法在g-C3N4纳米片上原位合成了一种小尺寸CoNi双金属助催化剂并研究了其光催化活性。采用X射线衍射(XRD)、透射电子显微镜(TEM)、紫外可见漫反射光谱(UV-vis DRS)、X射线光电子能谱(XPS)、光致发光(PL)、电化学阻抗(EIS)等手段对制备的CoNi/g-C3N4的理化性能进行了表征。光催化降解RhB实验表明,CoNi双金属助催化剂能有效提高g-C3N4中光生载流子的分离效率,从而提高光催化活性。当CoNi物质的量比为1∶1时,CoNi/g-C3N4的催化活性最高,其降解速率为0.01633 min−1,在可见光照射下比g-C3N4提高3.9倍,该光催化剂在五次循环后仍能保持良好光催化活性, 该反应的主要活性物种为超氧自由基($\cdot{\rm{ O}}^-_2 $)。
  • FIG. 1986.  FIG. 1986.

    FIG. 1986.  FIG. 1986.

    图  1  RhB标准曲线

    Figure  1  Standard curve of RhB

    图  2  不同催化剂的XRD谱图

    Figure  2  XRD patterns of different catalysts

    图  3  (a)普通g-C3N4,(b)二次煅烧后的g-C3N4, ((c), (d))CoNi/g-C3N4的TEM照片

    Figure  3  TEM images of (a) Plain g-C3N4, (b) g-C3N4 after secondary calcination, ((c), (d)) TEM images of CoNi/g-C3N4

    图  4  CoNi/g-C3N4的XPS谱图

    Figure  4  XPS spectra of CoNi/g-C3N4

    图  5  不同催化剂的UV-vis DRS谱图

    Figure  5  UV-vis DRS spectra of different catalysts

    图  6  不同催化剂的PL与EIS谱图

    Figure  6  PL and EIS spectra of different catalysts

    图  7  ((a)、(b)) 不同催化剂对RhB的降解活性,(c) 降解动力学拟合,(d) 不同催化剂对MB的降解活性

    Figure  7  ((a), (b)) Degradation activity of different catalysts for RhB, (c) Degradation kinetic fit, (d) Degradation activity of different catalysts for MB

    图  8  CoNi/g-C3N4稳定性实验

    Figure  8  Catalytic stability of CoNi/g-C3N4

    图  9  各种捕获剂对 RhB 降解率的影响

    Figure  9  Effects of various scavenger agents on RhB degradation rate

    图  10  光催化降解RhB的机理

    Figure  10  Photocatalytic degradation mechanism of RhB

    表  1  不同催化剂对RhB降解拟合曲线的k

    Table  1  k value of fitting curve of RhB degradation by different catalysts

    Catalystg-C3N4CoNi/g-C3N4Ni/g-C3N4Co/g-C3N4
    k/min−10.004190.016330.009660.00874
    下载: 导出CSV

    表  2  不同复合材料在可见光照射下光催化降解RhB的性能比较

    Table  2  Comparison of photocatalytic removal of RhB under visible light irradiation using different composite materials

    CatalystLight sourceAmount of photocatalysis/mgPollutantTime/minRemoval efficiency/%Ref.
    CoNi/g-C3N4Halide lamp (250 W)20RhB18095.4this work
    Bi2O3/g-C3N4Mercury lamp (300 W)25RhB18083[32]
    g-C3N4-BiVO4-AgXe lamp (500 W)50RhB15076.3[33]
    LaFeO3/g-C3N4Xe lamp (200 W)50RhB12058.4[34]
    g-C3N4/ZnO/Cu2OXe lamp (500 W)50RhB10091.4[35]
    g-C3N4@UiO-66Mercury lamp (500 W)20RhB14099[36]
    ZnO/g-C3N4Xe lamp (500 W)50RhB12051.3[37]
    下载: 导出CSV
  • [1] SAHOO D P, DAS K K, PATNAIK S, PARIDA K. Double charge carrier mechanism through 2D/2D interface-assisted ultrafast water reduction and antibiotic degradation over architectural S, P co-doped g-C3N4/ZnCr LDH photocatalyst[J]. Inorg Chem Front,2020,7(19):3695−3717. doi: 10.1039/D0QI00617C
    [2] BAI J, SUN Y, LI M, YANG L N, LI J, HU S Z. “Two channel” photocatalytic hydrogen peroxide production using g-C3N4 coated CuO nanorod heterojunction catalysts prepared via a novel molten salt-assisted microwave process[J]. New J Chem,2018,42(16):13529−13535. doi: 10.1039/C8NJ02565G
    [3] NASIR M S, YANG G, AYUB I, WANG S, WANG L, WANG X J, YAN W, PENG S J, RAMAKARISHNA S. Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation[J]. Appl Catal B: Environ,2019,257:117855. doi: 10.1016/j.apcatb.2019.117855
    [4] MELIAN E P, LOPEZ C R, MENDEZ A O, DIAZ O G, SUAREZ M N, RODRIGUEZ J M D, NAVIO J A, HEVIA D F. Hydrogen production using Pt-loaded TiO2 photocatalysts[J]. Int J Hydrog Energy,2013,38(27):11737−11748. doi: 10.1016/j.ijhydene.2013.07.006
    [5] TONDA S, KUMAR S, SHANKER V. Surface plasmon resonance-induced photocatalysis by Au nanoparticles decorated mesoporous g-C3N4 nanosheets under direct sunlight irradiation[J]. Mater Res Bull,2016,75:51−58. doi: 10.1016/j.materresbull.2015.11.011
    [6] BU Y, CHEN Z, LI W. Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material[J]. Appl Catal B: Environ,2014,144:622−630. doi: 10.1016/j.apcatb.2013.07.066
    [7] PENG W, ZHANG S S, SHAO Y B, HUANG J H. Bimetallic PtNi/g-C3N4 nanotubes with enhanced photocatalytic activity for H2 evolution under visible light irradiation[J]. Int J Hydrog Energy,2018,43(49):22215−22225. doi: 10.1016/j.ijhydene.2018.10.102
    [8] LI Y H, LI J Y, XU Y J. Bimetallic nanoparticles as cocatalysts for versatile photoredox catalysis[J]. EnergyChem,2021,3(1):100047. doi: 10.1016/j.enchem.2020.100047
    [9] LIN Z, LI J, LI L H, YU L L, LI W J, YANG G W. Manipulating the hydrogen evolution pathway on composition-tunable CuNi nanoalloys[J]. J Mater Chem A,2017,5(2):773−781. doi: 10.1039/C6TA09169E
    [10] WEI L G, CHEN W, JIA C Y, WANG D, LI M, DONG Y L, SONG W N, LIU L L, YANG Y L. Facile synthesis of CoNi bimetallic nanoparticle decorated reduced graphene oxide as efficient and low-cost counter electrode for dye-sensitized solar cells[J]. J Nanosci Nanotechnol,2019,19(12):7790−7798. doi: 10.1166/jnn.2019.16862
    [11] YANG L, WANG D, LV Y L, CAO D P. Nitrogen-doped graphitic carbons with encapsulated CoNi bimetallic nanoparticles as bifunctional electrocatalysts for rechargeable Zn-Air batteries[J]. Carbon,2019,144:8−14. doi: 10.1016/j.carbon.2018.12.008
    [12] 郑小刚, 杜京城, 付孝锦, 由耀辉, 宋玉春, 李子黎, 刘勇. 双金属位催化剂Ag-Ni/g-C3N4可见光催化降解亚甲基蓝[J]. 硅酸盐学报,2018,46(1):85−92.

    ZHENG Xiao-gang, DU Jing-cheng, FU Xiao-jin, SONG Yu-chun, LI Zi-li, LIU Yong. Carbon Nitride Bimetallic Ag-Ni/g-C3N4 Catalysts for Photocatalytic Degradation of Methylene Blue under Visible-light Irradiation[J]. J Chin Chem Soc,2018,46(1):85−92.
    [13] KARIMI-NAZARABAD M, AHMADZADEH H, GOHARSHADI E K. Porous perovskite-lanthanum cobaltite as an efficient cocatalyst in photoelectrocatalytic water oxidation by bismuth doped g-C3N4[J]. Sol Energy,2021,227:426−437. doi: 10.1016/j.solener.2021.09.028
    [14] XI J H, XIA H, NING X M, ZHANG Z, LIU J, MU Z J, ZHANG S T, DU P Y, LU X Q. Carbon-Intercalated 0D/2D hybrid of hematite quantum dots/graphitic carbon nitride nanosheets as superior catalyst for advanced oxidation[J]. Small,2019,15(43):1902744. doi: 10.1002/smll.201902744
    [15] MALIK R, TOMER V K. State-of-the-art review of morphological advancements in graphitic carbon nitride (g-CN) for sustainable hydrogen production[J]. Renewable Sustainable Energy Rev,2021,135:110235. doi: 10.1016/j.rser.2020.110235
    [16] TAN S F, OUYANG W M, JI Y J, HONG Q W. Carbon wrapped bimetallic NiCo nanospheres toward excellent HER and OER performance[J]. J Alloys Compd,2021,889:161528. doi: 10.1016/j.jallcom.2021.161528
    [17] QIU P X, XU C M, CHEN H, JIANG F, WANG X, LU R F, ZHANG X R. One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity[J]. Appl Catal B: Environ,2017,206:319−327. doi: 10.1016/j.apcatb.2017.01.058
    [18] ZHAN X H, ZHAO Y, ZHOU G Y, YU J X, WANG H, SHI H X. Oxygen-containing groups and P doped porous carbon nitride nanosheets towards enhanced photocatalytic activity[J]. Chemosphere,2022,287:132399. doi: 10.1016/j.chemosphere.2021.132399
    [19] WANG Y Y, ZHAO S, ZHANG Y W, FANG J S, ZHOU Y M, YUAN S H, ZHANG X, SHEN W X. One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation[J]. Appl Surf Sci,2018,440:258−265. doi: 10.1016/j.apsusc.2018.01.091
    [20] CHEN S B, NG Y H, LIAO J H, GAO Q Z, YANG S Y, PENG F, ZHONG X H, FANG Y P, ZHANG S S. FeCo alloy@ N-doped graphitized carbon as an efficient cocatalyst for enhanced photocatalytic H2 evolution by inducing accelerated charge transfer[J]. J Energy Chem,2021,52:92−101. doi: 10.1016/j.jechem.2020.04.040
    [21] WU Z S, CHEN L, LIU J Z, PARVEZ K, LIANG H W, SHU J, SACHDEV H, GRAF R, FENG X L, MULLEN K. High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers[J]. Adv Mater,2014,26(9):1450−1455. doi: 10.1002/adma.201304147
    [22] ZHANG B, ZHANG X M, WEI Y, XIA L, PI C R, SONG H, ZHENG Y, GAO B, FU J J, CHU P K. General synthesis of NiCo alloy nanochain arrays with thin oxide coating: A highly efficient bifunctional electrocatalyst for overall water splitting[J]. J Alloys Compd,2019,797:1216−1223. doi: 10.1016/j.jallcom.2019.05.036
    [23] GUO Z W, LIU T, WANG Q T, GAO G H. Construction of cost-effective bimetallic nanoparticles on titanium carbides as a superb catalyst for promoting hydrolysis of ammonia borane[J]. RSC Adv,2018,8(2):843−847. doi: 10.1039/C7RA10568A
    [24] LI Y J, ZHANG D W, XI X M, SHEN Y J, CHANG S H, ZHU J, CHEN Y X, JIANG L X, ZHANG J. Noble metal-free bimetallic NiCo decorated Zn0.5Cd0.5S solid solution for enhanced photocatalytic H2 evolution under visible light[J]. Int J Hydrog Energy,2020,45(15):8300−8309. doi: 10.1016/j.ijhydene.2020.01.154
    [25] CHEN W T, CHAN A, SUN-WATERHOUSE D, MORIGA T, IDRISS H, WATERHOUSE G I N. Ni/TiO2: A promising low-cost photocatalytic system for solar H2 production from ethanol-water mixtures[J]. J Catal,2015,326:43−53. doi: 10.1016/j.jcat.2015.03.008
    [26] ZHU Y X, ZHONG X, JIA X T, YAO J F. Bimetallic Ni-Co nanoparticles confined within nitrogen defective carbon nitride nanotubes for enhanced photocatalytic hydrogen production[J]. Environ Res,2022,203:111844. doi: 10.1016/j.envres.2021.111844
    [27] HAN Z X, YU Y L, ZHENG W J, CAO Y A. The band structure and photocatalytic mechanism for a CeO2-modified C3N4 photocatalyst[J]. New J Chem,2017,41(18):9724−9730. doi: 10.1039/C7NJ01614J
    [28] CHEN Q, HOU H J, ZHANG D W, HU S G, MIN T, LIU B C, YANG C Z, PU W H, HU J P, YANG J K. Enhanced visible-light driven photocatalytic activity of hybrid ZnO/g-C3N4 by high performance ball milling[J]. J Photochem,2018,350:1−9.
    [29] 施辰阳, 傅督, 王娟, 吴西林, 陈建荣. 氮化碳负载单原子铜在可见光下催化活化过二硫酸盐研究[J]. 中国科学: 化学,2021,8(51):1104−1112.

    SHI Chen-yang, FU Du, WANG Juan, WU Xi-lin, CHEN Jian-rong. Single-atom Cu supported on carbon nitride for activation of persulfate under visible light irradiation[J]. Sci Sin Chim,2021,8(51):1104−1112.
    [30] MENG A Y, ZHANG L Y, CHENG B, YU J D. Dual cocatalysts in TiO2 photocatalysis[J]. Adv Mater,2019,31(30):1807660.
    [31] XIAO Q, SARINA S, JAATINEN E, JIA J F, ARNOLD D P, LIU H W, ZHU H Y. Efficient photocatalytic Suzuki cross-coupling reactions on Au-Pd alloy nanoparticles under visible light irradiation[J]. Green Chem,2014,16(9):4272−4285. doi: 10.1039/C4GC00588K
    [32] ABDELAZIZ M B, CHOUCHENE B, BALAN L, GRIES T, MEDJAHDI G, EZZAOUIA H, SCHNEIDER R. One pot synthesis of bismuth oxide/graphitic carbon nitride composites with high photocatalytic activity[J]. Mol Catal,2019,463:110−118.
    [33] DANG M Y, TAN G Q, WANG M, ZHANG B X, WANG Y, LV L, REN H J, XIA A. Enhanced photocatalytic performance of g-C3N4-BiVO4 -Ag heterojunction induced by interfacial electric fields and Schottky junction[J]. J Alloys Compd,2022,897:163214.
    [34] YE Y C, YANG H, WANG X X, FENG W J. Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts[J]. Mater Sci Semicond Process,2018,82:14−24.
    [35] RAJENDRAN R, VIGNESH S, SASIREKA A, PRIYA P, SUGANTHI S, RAJ V, SUNDAR J K, SRINIVASAN M, SHKIR M, ALFAIFY S. Investigation on novel Cu2O modified g-C3N4/ZnO heterostructures for efficient photocatalytic dye degradation performance under visible-light exposure[J]. Colloids Interface Sci Commun,2021,44:100480.
    [36] MARDIROOSI A, MAHJOUB A R, FAKHRI H, BOUKHERROUB R. Design and fabrication of a perylene dimiide functionalized g-C3N4@UiO-66 supramolecular photocatalyst: Insight into enhancing the photocatalytic performance[J]. J Mol Struct,2021,1246:131244.
    [37] CHEN Q, HOU H J, ZHANG D W, HU S G, MIN T, LIU B C, YANG C Z, PU W H, HU J P, YANG J K. Enhanced visible-light driven photocatalytic activity of hybrid ZnO/g-C3N4 by high performance ball milling[J]. J Photochem Photobiol A,2018,350:1−9.
    [38] LI Y, SUN H J, PENG T J, YOU H, QIN Y T, ZENG L. Effects of muscovite matrix on photocatalytic degradation in TiO2/muscovite nanocomposites[J]. Appl Clay Sci,2019,179:105155. doi: 10.1016/j.clay.2019.105155
    [39] JIANG Z F, ZHU J J, LIU D, WEI W, XIE J M, CHEN M. In situ synthesis of bimetallic Ag/Pt loaded single-crystalline anatase TiO2 hollow nano-hemispheres and their improved photocatalytic properties[J]. CrystEngComm,2014,16(12):2384−2394. doi: 10.1039/c3ce41949e
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  594
  • HTML全文浏览量:  199
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-16
  • 修回日期:  2022-04-05
  • 录用日期:  2022-04-11
  • 网络出版日期:  2022-04-28
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回