留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mn-Fe复合氧化物脱除燃煤烟气中砷、硒的实验研究

黄玉林 邢佳颖 王春波 张月

黄玉林, 邢佳颖, 王春波, 张月. Mn-Fe复合氧化物脱除燃煤烟气中砷、硒的实验研究[J]. 燃料化学学报(中英文), 2022, 50(11): 1517-1523. doi: 10.19906/j.cnki.JFCT.2022037
引用本文: 黄玉林, 邢佳颖, 王春波, 张月. Mn-Fe复合氧化物脱除燃煤烟气中砷、硒的实验研究[J]. 燃料化学学报(中英文), 2022, 50(11): 1517-1523. doi: 10.19906/j.cnki.JFCT.2022037
HUANG Yu-lin, XING Jia-ying, WANG Chun-bo, ZHANG Yue. Experimental study on adsorption of arsenic and selenium in coal fired flue gas by Mn-Fe binary oxide[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1517-1523. doi: 10.19906/j.cnki.JFCT.2022037
Citation: HUANG Yu-lin, XING Jia-ying, WANG Chun-bo, ZHANG Yue. Experimental study on adsorption of arsenic and selenium in coal fired flue gas by Mn-Fe binary oxide[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1517-1523. doi: 10.19906/j.cnki.JFCT.2022037

Mn-Fe复合氧化物脱除燃煤烟气中砷、硒的实验研究

doi: 10.19906/j.cnki.JFCT.2022037
基金项目: 国家重点研发计划(2020YFB0606301)和国家自然科学基金(51976059)资助
详细信息
    通讯作者:

    E-mail: 120192102130@ncepu.edu.cn

  • 中图分类号: X773

Experimental study on adsorption of arsenic and selenium in coal fired flue gas by Mn-Fe binary oxide

Funds: The project was supported by the National Key R&D Program of China (2020YFB0606301) and National Natural Science Foundation of China (51976059)
  • 摘要: 采用共沉淀法制备了一系列Mn-Fe复合氧化物,研究了物质的量比和温度对气相砷、硒吸附的影响,考察了As2O3和SeO2双组分气体的同时吸附特性,对吸附产物中砷、硒的稳定性进行测定。结果表明,As2O3和SeO2在Mn-Fe复合氧化物表面的吸附量随Mn含量增加呈先增大后减小的趋势,当Mn/Fe物质的量比为1∶1时吸附量达到最大;两者的最佳吸附温度分别为750和600 ℃;双组分气体同时吸附时,两者存在竞争作用,Mn-Fe复合氧化物会优先吸附As2O3,SeO2的吸附受到抑制;此外,预吸附的SeO2会增强临近原子吸附活性,促进As2O3的吸附;吸附后的Mn-Fe复合氧化物浸出液中砷和硒的质量浓度均低于控制限值,在随粉煤灰进行资源化利用(如作为混凝土成分、水泥原料等)过程中不会产生二次污染。
  • FIG. 1993.  FIG. 1993.

    FIG. 1993.  FIG. 1993.

    图  1  固定床吸附反应实验装置示意图

    Figure  1  Fixed bed adsorption reaction experimental device

    图  2  吸附剂的XRD谱图

    Figure  2  XRD patterns of adsorbents

    图  3  不同Mn/Fe物质的量比对吸附性能的影响

    Figure  3  Effect of Mn/Fe molar ratio on adsorption properties

    (a): Actual adsorption capacity;(b): Theoretical adsorption capacity

    图  4  吸附温度对Mn-Fe复合氧化物吸附性能的影响

    Figure  4  Effect of temperature on adsorption properties of Mn-Fe binary oxides

    图  5  新鲜及不同吸附温度下Mn-Fe复合氧化物的SEM照片

    Figure  5  SEM images of Mn-Fe binary oxides at fresh and different adsorption temperatures

    图  6  As2O3和SeO2双组分气体同时吸附特性

    Figure  6  Simultaneous adsorption characteristics of As2O3 and SeO2

    图  7  预吸附As2O3/SeO2对另一种组分吸附的影响

    Figure  7  Effect of pre-adsorption of As2O3/SeO2 on adsorption of another component

    图  8  Mn-Fe复合氧化物对As2O3/SeO2的选择性吸附能力

    Figure  8  Selective adsorption capacity of Mn-Fe binary oxide for As2O3/SeO2

    表  1  吸附剂的元素含量、比表面积和孔结构参数

    Table  1  Contents of Mn and Fe elements, specific surface area and pore structure parameters of adsorbents

    Mn/Fe
    (mole
    ratio)
    Mn/%Fe/%Surface
    area/
    (m2·g−1)
    Pore
    volume/
    (cm3·g−1)
    Pore
    diameter/
    nm
    Fe2O30.00100.0016.370.1122.10
    0.25∶120.5479.46201.310.375.94
    0.5∶135.3964.61160.060.326.28
    1∶151.5248.48117.130.309.37
    2∶169.4130.5976.480.2511.68
    Mn3O4100.000.0019.020.1320.71
    下载: 导出CSV

    表  2  Mn-Fe复合氧化物中砷和硒的浸出特性

    Table  2  Leaching characteristics of As and Se on spent Mn-Fe binary oxide

    Leached As/SeSeparateSimultaneous
    AsSeAsSe
    Amount /(mg·L−1)0.02160.10780.01260.0525
    Proportion /%0.2712.3720.1141.733
    下载: 导出CSV
  • [1] 吴江, Humphroy Muzvidziwa, 关昱, 张文博, 徐凯. 燃煤烟气污染物脱除技术研究进展[J]. 上海电力学院学报,2018,34(3):277−282.

    WU Jiang, Humphroy Muzvidziwa, GUAN Yu, ZHANG Wen-bo, XU Kai. Research progress on removal of pollutants from coal-fired flue gas[J]. J Shanghai Univ Electr Pow,2018,34(3):277−282.
    [2] 陈光升. 现阶段我国煤炭价格与能源消费结构的关系分析[J]. 发展研究,2021,3:29−30.

    CHEN Guang-sheng. Analysis of the relationship between coal price and energy consumption structure in China[J]. Devel Res,2021,3:29−30.
    [3] 黄永达, 胡红云, 龚泓宇, 刘慧敏, 付彪, 李帅, 罗光前, 姚洪. 燃煤电厂砷, 硒, 铅的排放与控制技术研究进展[J]. 燃料化学学报,2020,48(11):1281−1297.

    HUANG Yong-da, HU Hong-yun, GONG Hong-yu, LIU Hui-min, FU Biao, LI Shuai, LUO Guang-qian, YAO Hong. Research progress on emission and control technologies of arsenic, selenium and lead in coal-fired power plants[J]. J Fuel Chem Technol,2020,48(11):1281−1297.
    [4] 段钰锋, 朱纯, 佘敏, 姚婷, 赵士林, 汤红健, 黄天放, 刘猛. 燃煤电厂汞排放与控制技术研究进展[J]. 洁净煤技术,2019,25(2):1−17.

    DUAN Yu-feng, ZHU Chun, SHE Min, YAO Ting, ZHAO Shi-lin, TANG Hong-jian, HUANG Tian-fang, LIU Meng. Research progress on mercury emission and control technologies in coal-fired power plants[J]. Clean Coal Technol,2019,25(2):1−17.
    [5] WU Y W, ZHOU X Y, MI T G, HU Z H, XU M X, ZHANG B, ZHAO L, LU Q. First-principles insights into the adsorption and interaction mechanism of selenium on selective catalytic reduction catalyst[J]. Chemosphere,2021,275:130057. doi: 10.1016/j.chemosphere.2021.130057
    [6] 陆强, 裴鑫琦, 徐明新, 王涵啸, 吴亚昌, 欧阳昊东. SCR脱硝催化剂抗砷中毒改性优化与再生研究进展[J]. 化工进展,2021,40(5):2365−2374.

    LU Qiang, PEI Xin-qi, XU Ming-xin, WANG Xiao-han, WU Ya-chang, OUYANG-Hao-dong. Progress in the development and regeneration of SCR catalysts for anti-arsenic poisoning[J]. Chem Ind Eng Prog,2021,40(5):2365−2374.
    [7] 赵重阳, 李国波, 眭华军, 刘初明, 王玲, 张亚平. 砷中毒商业V2O5-WO3/TiO2催化剂再生研究[J]. 分子催化,2020,34(5):407−414.

    ZHAO Chong-yang, LI Guo-bo, GUI Hua-jun, LIU Chu-ming, WANG Ling, ZHANG Ya-ping. Regeneration of commercial V2O5-WO3/TiO2 catalyst for arsenic poisoning[J]. J Mol Catal,2020,34(5):407−414.
    [8] SHEN F H, LIU J, ZHANG Z, DAI J X. On-Line analysis and kinetic behavior of arsenic release during coal combustion and pyrolysis[J]. Environ Sci Technol,2015,49(22):13716−13723.
    [9] RIESS M, MU LLER M. High temperature sorption of arsenic in gasification atmosphere[J]. Energy Fuels,2010,25(4):1438−1443.
    [10] 张月, 王春波, 刘慧敏, 孙喆, 李文瀚, 张永生, 潘伟平. 金属氧化物吸附剂干法脱除气相As2O3实验研究[J]. 燃料化学学报,2015,43(4):476−482. doi: 10.3969/j.issn.0253-2409.2015.04.016

    ZHANG Yue, WANG Chun-bo, LIU Hui-min, SUN Zhe, LI Wen-han, ZHANG Yong-sheng, PAN Wei-ping. Removal of gas-phase As2O3 in dry process by metal oxide adsorbents[J]. J Fuel Chem Technol,2015,43(4):476−482. doi: 10.3969/j.issn.0253-2409.2015.04.016
    [11] 余圣辉, 张成, 袁昌乐, 马仑, 方庆艳, 陈刚. 矿物质氧化物对燃煤烟气中砷/铅的吸附特性研究[J]. 燃料化学学报,2020,48(11):1345−1355. doi: 10.3969/j.issn.0253-2409.2020.11.008

    YU Sheng-hui, ZHANG Cheng, YUAN Chang-le, MA Lun, FANG Qing-yan, CHEN Gang. Study on arsenic /lead adsorption characteristics by mineral oxides in coal-fired flue gas[J]. J Fuel Chem Technol,2020,48(11):1345−1355. doi: 10.3969/j.issn.0253-2409.2020.11.008
    [12] HUANG Y D, HU H Y, GONG H Y, XING H X, YUAN B, FU B, LI A J, YAO H. Mechanism study of selenium retention by iron minerals during coal combustion[J]. Proc Combust Inst,2021,38(3):4189−4197. doi: 10.1016/j.proci.2020.08.006
    [13] WANG Y, YU J L, WANG Z H, LIU Y X, ZHAO Y C. A review on arsenic removal from coal combustion: Advances, challenges and opportunities[J]. Chem Eng J,2021,414:128785. doi: 10.1016/j.cej.2021.128785
    [14] 曹辉. 二氧化钛负载铈锰氧化物脱除煤气汞及再生的机理研究[D]. 杭州: 浙江大学, 2020.

    CAO Hui. Mechanism study on the mercury removal from coal gas by titanium dioxide supported cerium manganese oxides and its regeneration[D]. Hangzhou: Zhejiang University, 2020.
    [15] HE K Q, YUAN C G, JIANG Y H, DUAN X L, LI Y, SHI M D. Synergistic effects of Fe-Mn binary oxide for gaseous arsenic removal in flue gas[J]. Ecotox Environ Safe,2021,207:111491. doi: 10.1016/j.ecoenv.2020.111491
    [16] 刘翔, 张月, 邢佳颖, 郭雨生, 许桐, 王春波. Mn改性Fe2O3/γ-Al2O3脱除气相As2O3实验研究[J]. 中国电机工程学报,2021,41(15):5250−5258.

    LIU Xiang, ZHANG Yue, XING Jia-ying, GUO Yu-sheng, XU Tong, WANG Chun-bo. Experimental study on removal of gas-phase As2O3 by Mn modified Fe2O3/γ-Al2O3[J]. Proc CSEE,2021,41(15):5250−5258.
    [17] 唐强. SO2和NOx混合气体竞争吸附实验研究[D]. 西安: 西安交通大学, 2003.

    TANG Qiang. Experimental investigation of the SO2 and NOx binary gas competitive adsorption[D]. Xian: Jiaotong University, 2003.
    [18] 胡长兴. 燃煤电站汞排放及活性炭稳定吸附机理研究[D]. 杭州: 浙江大学, 2007.

    HU Chang-xing. Mechanism of mercury emission and stable adsorption of activated carbon from coal-fired power station[D]. Hangzhou: Zhejiang University, 2007.
    [19] 张明光, 李海龙, 赵永椿, 张军营. 纳米硫化锌吸附剂中汞的稳定性研究[J]. 工程热物理学报,2018,39(7):1630−1634.

    ZHANG Ming-guang, LI Hai-long, ZHAO Yong-chun, ZHANG Jun-ying. Study on the stability of mercury on nano-ZnS adsorbents[J]. J Eng Therm,2018,39(7):1630−1634.
    [20] 孙文博. Mn基复合氧化物低温选择性催化还原NO性能及机理研究[D]. 大连: 大连理工大学, 2019.

    SUN Wen-bo. Selective catalytic reduction of NO over Mn-based mixed oxides and reaction mechanism studies[D]. Dalian: Dalian University of Technology, 2019.
    [21] 曹静, 刘盛余, 杨杰, 能子礼超, 杨淑清. 锰铁复合磁性材料制备及其对零价汞吸附性能研究[J]. 环境科学学报,2021,41(9):3745−3752.

    CAO Jing, LIU Sheng-yu, YANG Jie, NENGZI Li-chao, YANG Shu-qing. Study on the preparation of manganese-Fe composite magnetic materials and their capability for gaseous elemental mercury capture[J]. Acta Sci Circ,2021,41(9):3745−3752.
    [22] 谢江坤. 锰基复合氧化物及其对零价汞的吸附性能研究[D]. 上海: 上海交通大学, 2013.

    XIE Jiang-kun. Study of manganese-based binary metal oxides and their capability for gaseous elemental mercury capture[D]. Shanghai: Shanghai Jiao Tong University, 2013.
    [23] 姚挺. 锰基吸附剂的再生及循环脱汞机理研究[D]. 南京: 东南大学, 2020.

    YAO Ting. Mechanism study on regeneration and cyclic mercury removal of manganese based sorbent[D]. Nanjing: Southeast University, 2020.
    [24] SONG B, SONG M, CHEN D D, CAO Y, MENG F Y, WEI Y X. Retention of arsenic in coal combustion flue gas at high temperature in the presence of CaO[J]. Fuel,2020,259(1):116241−116249.
    [25] KONG F H, QIU J R, LIU H, ZHAO R, ZENG H C. Effect of NO/SO2 on elemental mercury adsorption by nano-Fe2O3[J]. Proc CSEE,2010,30(35):43−48.
    [26] XING J Y, WANG C B, HUANG Y L, LI S, ZHANG S Y. A comprehensive exploration about the effects of O2, SO2 and NO on As2O3 adsorption over Cu/γ-Al2O3 SCR catalyst: A DFT study[J]. Chem Eng Sci,2022,248:117260. doi: 10.1016/j.ces.2021.117260
    [27] SCHWARTZ G E, HOWER J C, PHILLIPS A L, NELSON R, AVNER V, HEILEEN H K. Ranking coal ash materials for their potential to leach arsenic and selenium: relative importance of ash chemistry and site biogeochemistry[J]. Environ Eng Sci,2018,35(7):728−738. doi: 10.1089/ees.2017.0347
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  136
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-25
  • 修回日期:  2022-04-26
  • 录用日期:  2022-04-27
  • 网络出版日期:  2022-05-05
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回