留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

制备条件对Cu-SSZ-13分子筛的形貌及其氨选择性催化还原脱硝性能的影响

吕文婷 焦卫勇 秦张峰 董梅 樊卫斌 王建国

吕文婷, 焦卫勇, 秦张峰, 董梅, 樊卫斌, 王建国. 制备条件对Cu-SSZ-13分子筛的形貌及其氨选择性催化还原脱硝性能的影响[J]. 燃料化学学报(中英文), 2022, 50(11): 1393-1403. doi: 10.19906/j.cnki.JFCT.2022038
引用本文: 吕文婷, 焦卫勇, 秦张峰, 董梅, 樊卫斌, 王建国. 制备条件对Cu-SSZ-13分子筛的形貌及其氨选择性催化还原脱硝性能的影响[J]. 燃料化学学报(中英文), 2022, 50(11): 1393-1403. doi: 10.19906/j.cnki.JFCT.2022038
LÜ Wen-ting, JIAO Wei-yong, QIN Zhang-feng, DONG Mei, FAN Wei-bin, WANG Jian-guo. Effect of preparation conditions on the morphology of Cu-SSZ-13 zeolites and their performance in the selective catalytic reduction of NOx by NH3[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1393-1403. doi: 10.19906/j.cnki.JFCT.2022038
Citation: LÜ Wen-ting, JIAO Wei-yong, QIN Zhang-feng, DONG Mei, FAN Wei-bin, WANG Jian-guo. Effect of preparation conditions on the morphology of Cu-SSZ-13 zeolites and their performance in the selective catalytic reduction of NOx by NH3[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1393-1403. doi: 10.19906/j.cnki.JFCT.2022038

制备条件对Cu-SSZ-13分子筛的形貌及其氨选择性催化还原脱硝性能的影响

doi: 10.19906/j.cnki.JFCT.2022038
基金项目: 山西省基础研究计划青年项目(20210302123263),煤转化国家重点实验室自主研究课题(2021BWZ009),国家自然科学基金(21875275,U1910203,21991092,21991090)和山西省自然科学基金(201901D211581)资助
详细信息
    通讯作者:

    E-mail: jiaoweiyong@sxicc.ac.cn

    qzhf@sxicc.ac.cn

  • 中图分类号: O643.36

Effect of preparation conditions on the morphology of Cu-SSZ-13 zeolites and their performance in the selective catalytic reduction of NOx by NH3

Funds: The project was supported by Basic Research Program Youth Project of Shanxi Province (20210302123263), the Independent Research Project of State Key Laboratory of Coal Conversion (2021BWZ009), National Natural Science Foundation of China (21875275, U1910203, 21991092, 21991090), and the Natural Science Foundation of Shanxi Province of China (201901D211581)
  • 摘要: 采用传统水热法合成SSZ-13分子筛,铜离子交换法制备Cu-SSZ-13分子筛催化剂,用于氨选择性催化还原(NH3-SCR)脱硝,研究了有机模板剂(OSDA)用量、硅源、铝源、水硅比、硅铝比以及老化时间等制备参数对Cu-SSZ-13分子筛形貌、晶粒大小、酸性、Cu2+位点以及NH3-SCR催化性能的影响。结果表明,在一定范围内,SSZ-13分子筛的硅铝比越高,其晶粒越大,所负载的活性铜含量越低,NH3-SCR催化活性也越差。以硅溶胶为硅源、硫酸铝为铝源所合成的SSZ-13分子筛晶粒较小,结晶度最高,所得到的Cu-SSZ-13催化剂的NH3-SCR活性也最好。较高的水硅比所合成的分子筛晶粒较大,而增加模板剂的用量有利于提高SSZ-13分子筛的结晶度,降低其晶粒尺寸。适当延长老化时间,能降低SSZ-13分子筛晶粒尺寸,提升Cu-SSZ-13的NH3-SCR催化活性。其中,Si/Al比为10、硅溶胶为硅源、硫酸铝为铝源、OSDA/Si比为0.4、水硅比为88、老化2 h得到的Cu-SZ-A10催化剂最优,在240000 h−1的高空速下,200 ℃时NO转化率达60%,且在中高温区NO转化率保持为100%。该工作对SSZ-13分子筛形貌的调控以及高性能NH3-SCR脱硝催化剂的制备具有重要的参考价值。
  • FIG. 1981.  FIG. 1981.

    FIG. 1981.  FIG. 1981.

    图  1  不同Si/Al比的SSZ-13分子筛的XRD谱图

    Figure  1  XRD patterns of various SSZ-13 zeolites synthesized with different Si/Al ratios in the synthesis gel (with the composition of 1SiO2∶(0–0.1)Al2(SO4)3∶0.3NaOH∶0.4SDA∶88H2O; JN25 as silicon source and aging for 2 h)

    图  2  不同Si/Al比的SSZ-13分子筛的SEM照片

    Figure  2  SEM images of various SSZ-13 zeolites synthesized with different Si/Al ratios in the synthesis gel

    图  3  不同硅铝比的Cu-SSZ-13分子筛的NH3-FTIR谱图以及B酸位点示意图

    Figure  3  NH3-FTIR spectra (upper) of various Cu-SSZ-13 zeolites synthesized with different Si/Al ratios in the synthesis gel and schematic diagram of different B acid sites (lower)

    图  4  不同硅铝比的Cu-SSZ-13分子筛的低温EPR谱图

    Figure  4  EPR spectra collected at 150 K for various Cu-SSZ-13 zeolites synthesized with different Si/Al ratios in the synthesis gel

    图  5  不同硅铝比的Cu-SSZ-13分子筛的NH3-SCR活性

    Figure  5  NH3-SCR activity of various Cu-SSZ-13 zeolites synthesized with different Si/Al ratios in the synthesis gel (GHSV=60000 h−1)

    图  6  不同硅源合成的SSZ-13分子筛的XRD谱图

    Figure  6  XRD patterns of various SSZ-13 zeolites synthesized using different silica sources (with the gel composition of 1SiO2∶0.05Al2(SO4)3∶0.3NaOH∶0.4SDA∶88H2O; aging for 2 h)

    图  7  不同硅源合成的SSZ-13分子筛的SEM照片

    Figure  7  SEM images of various SSZ-13 zeolites synthesized by different silica sources (SZ-13-B-TS, TEOS; SZ13-B-FS, fume silica; SZ13-A-10, JN25)

    图  8  不同硅源合成的Cu-SSZ-13分子筛的NH3-SCR活性

    Figure  8  NH3-SCR activity of various Cu-SSZ-13 zeolites synthesized using different silica sources (GHSV = 60000 h−1)

    图  9  不同铝源合成的SSZ-13分子筛的XRD谱图

    Figure  9  XRD patterns of various SSZ-13 zeolites synthesized using different aluminum sources

    图  10  不同铝源合成的SSZ-13分子筛的SEM照片

    Figure  10  SEM images of various SSZ-13 zeolites synthesized by different aluminum sources

    图  11  不同铝源合成的SSZ-13分子筛的 27Al NMR谱图

    Figure  11  27Al NMR spectra of various SSZ-13 zeolites synthesized using different aluminum sources

    图  12  不同铝源合成的Cu-SSZ-13分子筛的NH3-SCR活性

    Figure  12  NH3-SCR activity of various Cu-SSZ-13 zeolites synthesized using different aluminum sources (GHSV = 240000 h−1)

    图  13  不同模板剂含量(a)和不同水硅比(b)合成的SSZ-13分子筛的XRD谱图

    Figure  13  XRD patterns of SSZ-13 zeolites synthesized with different H2O/Si ratios (a) and different OSDA contents (b) in the synthesis gel

    图  14  不同水硅比及不同模板剂含量的SSZ-13分子筛的SEM照片

    Figure  14  SEM images of various SSZ-13 zeolites synthesized with different H2O/Si ratios and different OSDA contents in the synthesis gel

    图  15  不同模板剂含量(a)和不同水硅比(b)合成的Cu-SSZ-13分子筛的NH3-SCR活性比较

    Figure  15  NH3-SCR activity of various Cu-SSZ-13 zeolites synthesized with different OSDA contents (a) and different H2O/Si ratios (b) in the synthesis gel (GHSV = 60000 h−1)

    图  16  不同F含量及不同老化时间制备的SSZ-13分子筛的XRD谱图

    Figure  16  XRD patterns of various SSZ-13 zeolites synthesized with different F contents in the synthesis gel and different aging times

    图  17  不同F含量及不同老化时间制备的SSZ-13分子筛的SEM照片

    Figure  17  SEM images of various SSZ-13 zeolites synthesized with different F contents in the synthesis gel and different aging times

    图  18  不同F含量及不同老化时间制备的Cu-SSZ-13分子筛的NH3-SCR活性

    Figure  18  NH3-SCR activity of various Cu-SSZ-13 zeolites synthesized with different F contents in the synthesis gel and different aging times (GHSV = 60000 h−1)

    图  19  Cu-SZ13-A-10催化剂的水热稳定性(a)及抗硫性能(b)测试

    Figure  19  NH3-SCR activity of the Cu-SZ13-A-10 catalyst after hydrothermal treatment in steam under different conditions (a) as well as that by adding 1.0 × 10−4 SO2 in the feed (b) (GHSV = 240000 h−1)

    表  1  不同SSZ-13分子筛的化学组成及织构性质

    Table  1  Compositional and textural properties of various SSZ-13 zeolites

    SampleSi/AlgelSi
    source
    Al
    source
    SDA/SiH2O/Sitaging/
    h
    F/SiSi/AlCryst./
    %
    dave/
    μm
    Cu/AlLCu/
    %
    SBET/
    (m2·g−1)
    SZ13-A-55JN25Al2(SO4)30.48820<10
    SZ13-A-1010JN25Al2(SO4)30.4882010940.70.191.8563
    SZ13-A-2020JN25Al2(SO4)30.4882018880.80.311.7519
    SZ13-A-4040JN25Al2(SO4)30.4882027825.40.351.2506
    SZ13-A-100100JN25Al2(SO4)30.48820401008.60.220.6458
    SZ13-A-200200JN25Al2(SO4)30.4882052937.10.150.4447
    SZ13-A-infJN25Al2(SO4)30.48820<5
    SZ13-B-TS10TEOSAl2(SO4)30.488209591.20.111477
    SZ13-B-FS10Fume
    silica
    Al2(SO4)30.488208880.70.171.6487
    SZ13-C-AlCl310JN25AlCl30.48820118914.30.291.4470
    SZ13-C-Al(OH)310JN25Al(OH)30.4882018870.90.181.6480
    SZ13-D-010JN25Al2(SO4)308820−0
    SZ13-D-0.110JN25Al2(SO4)30.1882010492.10.141.4512
    SZ13-D-0.210JN25Al2(SO4)30.288209610.90.161.6527
    SZ13-D-0.310JN25Al2(SO4)30.388209730.80.191.8577
    SZ13-E-4410JN25Al2(SO4)30.4442010740.40.181.7571
    SZ13-E-6610JN25Al2(SO4)30.4662010810.50.191.8552
    SZ13-F-24h20JN25Al2(SO4)30.48824016940.40.241.6589
    SZ13-G-0.220JN25Al2(SO4)30.48820.220831.10.251.3547
    SZ13-G-0.1520JN25Al2(SO4)30.48820.1520712.10.241.3512
    SZ13-G-0.120JN25Al2(SO4)30.48820.119774.80.271.5533
    Notes: The relative crystallinity (cryst.) was estimated by comparing the intensity of peaks at 9.6°, 20.6° and 30.6° in the XRD patterns of each zeolite sample to that of SZ13-A-100. The BET surface area (SBET) was determined from nitrogen sorption isotherms. The Si/Al and Cu/Al ratios and Cu loadings (LCu) were measured by ICP-AES. The average crystal size (dave) was estimated from the SEM images
    下载: 导出CSV
  • [1] KASPAR J, FORNASIERO P, HICKEY N. Automotive catalytic converters: current status and some perspectives[J]. Catal Today,2003,77:419−449. doi: 10.1016/S0920-5861(02)00384-X
    [2] 杨喻博, 刘世通, 徐威风. 车用NH3-SCR催化剂研究现状[J]. 内燃机与配件,2020,12(1):66−69.

    YANG Yu-bo, LIU Shi-tong, XU Wei-feng. Application research of NH3-SCR catalyst for diesel vehicle[J]. Int Combust Eng Parts,2020,12(1):66−69.
    [3] BEALE A, GAO F, LEZCANO G, PEDEN C, SZANYI J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials[J]. Chem Soc Rev,2015,44:7371−7405.
    [4] 章凌, 段宏昌, 谭争国, 吴勤明, 孟祥举, 肖丰收. 用于柴油车尾气消除反应(NH3-SCR)的八元环沸石分子筛研究进展[J]. 高等学校化学学报,2020,41(1):19−27.

    ZHANG Ling, DUAN Hong-chang, TAN Zheng-guo, WU Qin-ming, MENG Xiang-ju, XIAO Feng-shou. Recent advances in the preparation of 8MR zeolites for the selective catalytic reduction of NO NH3-SCR in diesel engines[J]. Chem J Chin Univ,2020,41(1):19−27.
    [5] FICKEL D, ADDIO E, LAUTERBACH J, LOBO R. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites[J]. Appl Catal B: Environ,2011,102(1):441−448.
    [6] DEIMUND M, HARRISON L, LUNN J, LIU Y, MALEK A, SHAYIB R, DAVIS M. Effect of heteroatom concentration in SSZ-13 on the methanol to olefins reaction[J]. ACS Catal,2015,6:542−550.
    [7] LI Z, NAVARRO M T, TRIGUERO J M, YU J, CORMA A. Synthesis of nano-SSZ-13 and its application in the reaction of methanol to olefins[J]. Catal Sci Technol,2016,6:5856−5863. doi: 10.1039/C6CY00433D
    [8] XIE L, LIU F, REN L, SHI X, XIAO F, HE H. Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3[J]. Environ Sci Technol,2014,48:566−572. doi: 10.1021/es4032002
    [9] KWAK J, TONKYN R, KIM D, SZANYI J, PEDEN C. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3[J]. J Catal,2010,275:187−190. doi: 10.1016/j.jcat.2010.07.031
    [10] MAO Y, TIAN P, LIU Z. DMTO: A sustainable methanol-to-olefins technology[J]. Engineering,2021,7:17−21. doi: 10.1016/j.eng.2020.12.001
    [11] WANG C, WANG J, YU T, SHEN M, WANG W, LI W. The effect of sulfate species on the activity of NH3-SCR over Cu/SAPO-34[J]. Appl Catal B: Environ,2017,204:239−249. doi: 10.1016/j.apcatb.2016.11.033
    [12] XUE J, WANG X, QI G, WANG J, SHEN M, LI W. Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NOx with ammonia: Relationships between active Cu sites and de-NOx performance at low temperature[J]. J Catal,2013,297:56−64. doi: 10.1016/j.jcat.2012.09.020
    [13] WANG L, LI W, QI G, WENG D. Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH3[J]. J Catal,2012,289:21−29. doi: 10.1016/j.jcat.2012.01.012
    [14] ZONES S I. Zeolite SSZ-13 and its method of preparation: US, 4544538[P]. 1985-10-1.
    [15] REN L, ZHU L, YANG C, CHEN Y, SUN Q, ZHANG H, LI C, NAWAZ F, MENG X, XIAO F. Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3[J]. Chem Commun,2011,47:9789−9791.
    [16] KWAK J, TRAN D, BURTON S, SZANYI J, LEE J, PEDEN C. Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites[J]. J Catal,2012,287:203−209. doi: 10.1016/j.jcat.2011.12.025
    [17] LV W, MENG P, QIN Z, LI J, DONG M, WANG J, FAN W. A comparison of Al-rich Cu-SSZ-13 zeolites synthesized by different methods in their Al distribution, hydrothermal stability and catalytic performance in the selective catalytic reduction of NOx with NH3[J]. Microporous Mesoporous Mater,2021,313:110851. doi: 10.1016/j.micromeso.2020.110851
    [18] IVANOVA S, LEBRUN C, VANHAECKE E, PHAM-HUU C, LOUIS B. Influence of the zeolite synthesis route on its catalytic properties in the methanol to olefin reaction[J]. J Catal,2009,265(1):1−7. doi: 10.1016/j.jcat.2009.03.016
    [19] PRODINGER S, DEREWINSK M, WANG Y, WASHTON N, WALTER E, SZANYI J, GAO F, WANG Y, PEDEN C. Sub-micron Cu/SSZ-13: Synthesis and application as selective catalytic reduction (SCR) catalysts[J]. App Catal B: Environ,2017,201:461−469. doi: 10.1016/j.apcatb.2016.08.053
    [20] 秦萱, 尹德嘉, 余丽泽, 张涛, 常化振, 朱燕, 刘国华, 李俊华. 硅铝比对Cu/SSZ-13 SCR活性位的影响[J]. 中国环境科学,2020,40(2):591−599. doi: 10.3969/j.issn.1000-6923.2020.02.015

    QIN Xuan, YIN De-jia, YU Li-zhe, ZHANG Tao, CHANG Hua-zhen, ZHU Yan, LIU Guo-hua, LI Jun-hua. Effect of Si/Al ratio on the SCR active sites of Cu/SSZ-13[J]. China Environ Sci,2020,40(2):591−599. doi: 10.3969/j.issn.1000-6923.2020.02.015
    [21] GAO F, WASHTON N, WANG Y, KOLLAR M, SZANYI J, PEDEN C. Effects of Si/Al ratio on Cu/SSZ-13 NH3-SCR catalysts: Implications for the active Cu species and the roles of Bronsted acidity[J]. J Catal,2015,331:25−38. doi: 10.1016/j.jcat.2015.08.004
    [22] LEZCANO-GONZALEZ I, DEKA U, ARSTAD B, VAN YPEREN-DE DEYNE A, HEMELSOET K, WAROQUIER M, VAN SPEYBROECK V, WECKHUYSEN B, BEALE A. Determining the storage, availability and reactivity of NH3 within Cu-chabazite-based ammonia selective catalytic reduction systems[J]. Phys Chem Chem Phys,2014,16:1639−1650. doi: 10.1039/C3CP54132K
    [23] SUZUKI K, NODA T, KATADA N, NIWA M. IRMS-TPD of ammonia: Direct and individual measurement of Brønsted acidity in zeolites and its relationship with the catalytic cracking activity[J]. J Catal,2001,250:151−160.
    [24] GAO F, WALTER E, KARP E, LUO J, TONKYN R, KWAK J, SZANYI J, PEDEN C. Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies[J]. J Catal,2013,300:20−29. doi: 10.1016/j.jcat.2012.12.020
    [25] LEE H, SONG I, JEON S, KIM D. Inter-particle migration of Cu ions in physically mixed Cu-SSZ-13 and H-SSZ-13 treated by hydrothermal aging[J]. React Chem Eng,2019,4:1059−1066. doi: 10.1039/C8RE00281A
    [26] 张伟, 张堃, 雍晓静, 王峰, 温鹏宇. 不同硅源合成ZSM-5分子筛及其MTP反应催化性能[J]. 天然气化工,2015,1:13−17.

    ZHANG Wei, ZHANG Kun, YONG Xiao-jing, WANG Feng, WEN Peng-yu. Effect of silica soures on synthesis of ZSM-5 and their catalytic properties for MTP reaction[J]. Nat Gas Chem Ind,2015,1:13−17.
    [27] 徐如人, 庞文琴, 于吉红, 霍启升, 陈接胜. 分子筛与多孔材料化学[M]. 1版. 北京: 科学出版社, 2004.

    XU Ru-ren, PANG Wen-qin, YU Ji-hong, HUO Qi-sheng, CHEN Jie-sheng. Chemistry Zeolites and Porous Materials[M]. First ed. Beijing: Science Press, 2004.
    [28] LV W, WANG S, WANG P, LIU Y, HUANG Z, LI J, DONG M, WANG J, FAN W. Regulation of Al distributions and Cu2+ locations in SSZ-13 zeolites for NH3-SCR of NO by different alkali metal cations[J]. J Catal,2021,393:190−201. doi: 10.1016/j.jcat.2020.11.027
    [29] GAO, F, WANG Y, WASHTON N, KOLLAR M, SZANYI J, PEDEN C. Effects of alkali and alkaline earth cocations on the activity and hydrothermal stability of Cu/SSZ-13 NH3-SCR catalysts[J]. ACS Catal,2015,5:6780−6791. doi: 10.1021/acscatal.5b01621
    [30] ZHOU H, MOUZON J, FARZANEH A, ANTZUTKIN O, GRAHN M, HEDLUND J. Colloidal defect-free silicalite-1 single crystals: Preparation, structure characterization, adsorption, and separation properties for alcohol/water mixtures[J]. Langmuir,2015,31:8488−8494. doi: 10.1021/acs.langmuir.5b02520
    [31] TZANIS L, TRZPIT M, SOULARD M, PATARIN J. Energetic performances of STT-type zeosil: Influence of the nature of the mineralizing agent used for the synthesis[J]. J Phys Chem C,2012,116:4802−4808. doi: 10.1021/jp211819p
    [32] LI S, LI J, DONG M, FAN S, ZHAO T, WANG J, FAN W. Strategies to control zeolite particle morphology[J]. Chem Soc Rev,2019,48:885−907. doi: 10.1039/C8CS00774H
    [33] WIJAYANTI K, XIE K, KUMARB A, KAMASAMUDRAMB K, OLSSONAl L. Effect of gas compositions on SO2 poisoning over Cu/SSZ-13 used for NH3-SCR[J]. Appl Catal B: Environ,2017,219:142−154.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  454
  • HTML全文浏览量:  178
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 修回日期:  2022-05-03
  • 录用日期:  2022-05-06
  • 网络出版日期:  2022-05-12
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回