留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZIF-8/g-C3N4复合材料光催化深度氧化NO性能的研究

尹晓荷 庞吉胜 娄晨思 史雨翰 朱鹏飞 王传义

尹晓荷, 庞吉胜, 娄晨思, 史雨翰, 朱鹏飞, 王传义. ZIF-8/g-C3N4复合材料光催化深度氧化NO性能的研究[J]. 燃料化学学报(中英文), 2022, 50(12): 1647-1656. doi: 10.19906/j.cnki.JFCT.2022046
引用本文: 尹晓荷, 庞吉胜, 娄晨思, 史雨翰, 朱鹏飞, 王传义. ZIF-8/g-C3N4复合材料光催化深度氧化NO性能的研究[J]. 燃料化学学报(中英文), 2022, 50(12): 1647-1656. doi: 10.19906/j.cnki.JFCT.2022046
YIN Xiao-he, PANG Ji-sheng, LOU Chen-si, SHI Yu-han, ZHU Peng-fei, WANG Chuan-yi. Photocatalytic performance of ZIF-8/g-C3N4 composite for deep oxidation of NO[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1647-1656. doi: 10.19906/j.cnki.JFCT.2022046
Citation: YIN Xiao-he, PANG Ji-sheng, LOU Chen-si, SHI Yu-han, ZHU Peng-fei, WANG Chuan-yi. Photocatalytic performance of ZIF-8/g-C3N4 composite for deep oxidation of NO[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1647-1656. doi: 10.19906/j.cnki.JFCT.2022046

ZIF-8/g-C3N4复合材料光催化深度氧化NO性能的研究

doi: 10.19906/j.cnki.JFCT.2022046
基金项目: 国家自然科学基金(22006097)和陕西省重点研发计划(2022SF-250)资助
详细信息
    通讯作者:

    Tel:18392586563, E-mail: zhupengfei@sust.edu.cn

  • 中图分类号: TQ034

Photocatalytic performance of ZIF-8/g-C3N4 composite for deep oxidation of NO

Funds: The project was supported by National Natural Science Foundation of China (22006097) and the Key Research and Program of Shaanxi Province(2022SF-250)
  • 摘要: 采用热聚合法和原位沉积法分别制备g-C3N4、ZIF-8及不同质量比的ZIF-8/g-C3N4复合光催化材料,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)等表征手段对其结构性质进行表征。表征结果表明,合成的ZIF-8/g-C3N4复合材料没有破坏ZIF-8与g-C3N4原始的晶体结构与形貌,且ZIF-8与g-C3N4形成了异质结,ZIF-8/g-C3N4复合材料的BET比表面积比g-C3N4提高了30多倍。光催化氧化去除NO结果表明,12.5%-ZIF-8/g-C3N4的NO氧化去除效率最佳,且不生成有毒中间产物NO2,具有最优异的光催化活性,对于NO的氧化去除率可达55.1%。机理研究表明,基于g-C3N4的异质结构不仅抑制了光生载流子的复合,而且由于g-C3N4与ZIF-8之间的协同作用,促进了可见光的吸收以及反应物分子NO的吸附,从而提高了复合材料对NO的光催化氧化性能。
  • FIG. 2032.  FIG. 2032.

    FIG. 2032.  FIG. 2032.

    图  1  ZIF-8、g-C3N4和ZIF-8/g-C3N4的XRD谱图

    Figure  1  XRD patterns of ZIF-8, g-C3N4 and ZIF-8/g-C3N4

    图  2  ZIF-8、g-C3N4和ZIF-8/g-C3N4的傅里叶红外光谱谱图

    Figure  2  FT-IR spectra of ZIF-8, g-C3N4 and ZIF-8/g-C3N4

    图  3  ZIF-8、g-C3N4和ZIF-8/g-C3N4的紫外-可见漫反射光谱谱图

    Figure  3  UV-Vis DRS of ZIF-8, g-C3N4 and ZIF-8/g-C3N4

    图  4  g-C3N4和ZIF-8/g-C3N4的光电流响应图(a)与电化学阻抗谱图(b)

    Figure  4  Photocurrent responses (a) and EIS (b) of g-C3N4 and ZIF-8/g-C3N4

    图  5  g-C3N4和ZIF-8/g-C3N4的光催化活性:NO去除率((a),(c));NO2的生成量(b);ZIF-8/g-C3N4光催化去除NO的循环活性图(d)

    Figure  5  ((a), (c)) Photocatalytic performance of different photocatalyst samples for removal of NO under visible light irradiation; (b) Corresponding amount of NO2 generated over different photocatalyst samples; (d) Cyclic experiment of ZIF-8/g-C3N4 photocatalytic removal of NO

    图  6  g-C3N4((a), (e))、ZIF-8((b), (f))、12.5%-ZIF-8/g-C3N4((c), (g))和PM-12.5%-ZIF-8/g-C3N4((d), (h))的SEM图像((a)−(d))与TEM图像((e)−(h))和12.5%-ZIF-8/g-C3N4的EDS元素分布图((i)−(l))

    Figure  6  SEM ((a)−(d)) and TEM ((e)−(h)) images of g-C3N4((a), (e)), ZIF-8((b), (f)), 12.5%-ZIF-8/g-C3N4((c), (g)) and PM-12.5%-ZIF-8/g-C3N4((d), (h)); Elements mappings ((i)−(l)) of 12.5%-ZIF-8/g-C3N4

    图  7  ZIF-8、g-C3N4和12.5%-ZIF-8/g- C3N4的N2吸附-脱附曲线(a)和BJH孔径分布(b)

    Figure  7  N2 adsorption-desorption curves (a) and BJH pore size distributions (b) of ZIF-8, g-C3N4 and 12.5%-ZIF-8/g- C3N4

    图  8  ZIF-8、g-C3N4和12.5%-ZIF-8/g-C3N4的XPS全谱(a)及高分辨Zn 2p(b)、C 1s(c)和N 1s(d)谱图

    Figure  8  XPS profiles of ZIF-8, g-C3N4 and 12.5%-ZIF-8/g-C3N4 (a) Full scan, (b) Zn 2p, (c) C 1s, (d) N 1s

    图  9  g-C3N4、12.5%-ZIF-8/g-C3N4和PM-12.5%-ZIF-8/g-C3N4的荧光光谱谱图

    Figure  9  PL spectra of g-C3N4, 12.5%-ZIF-8/g-C3N4 and PM-12.5%-ZIF-8/g-C3N4

    图  10  ZIF-8和g-C3N4的禁带宽度图(a)、莫特-肖特基图(b)及ZIF-8/g-C3N4光催化去除NO机理图(c)

    Figure  10  (a) Band gaps and (b) Mott-schottky plots of ZIF-8 and g-C C3N4, (c) Possible mechanism of photocatalytic NO removal over ZIF-8/g-C3N4

    表  1  制备ZIF-8/g-C3N4纳米复合材料的原料配比

    Table  1  Raw material ratio for preparing ZIF-8/g-C3N4 nanocomposite

    Zinc acetate 2-methylimidazole Name
    0.5 mmol 2 mmol 6.25%-ZIF-8/g-C3N4
    1 mmol 4 mmol 12.5%-ZIF-8/g-C3N4
    2 mmol 8 mmol 25%-ZIF-8/g-C3N4
    3 mmol 12 mmol 37.5%-ZIF-8/g-C3N4
    4 mmol 16 mmol 50%-ZIF-8/g-C3N4
    下载: 导出CSV

    表  2  ZIF-8-g-C3N4和12.5%-ZIF-8/g-C3N4纳米复合材料的比表面积、孔体积和孔径

    Table  2  Specific surface areas, pore volumes and pore sizes of g-C3N4, ZIF-8 and 12.5%-g-C3N4/ZIF-8

    Sample BET specific surface area
    /(m2·g−1)
    Pore volume
    /(cm3·g−1)
    Pore size
    /nm
    ZIF-8 1244.20 0.0573 2.301
    g-C3N4 8.07 0.0479 28.8231
    ZIF-8/g-C3N4 260.25 0.0488 2.7986
    下载: 导出CSV
  • [1] 周皞, 李梦雨, 赵辉爽, 伍士国, 叶必朝, 苏亚欣. 富氧条件下Fe-Mn/Beta选择性催化丙烯还原氮氧化物[J]. 燃料化学学报,2019,47(6):751−761. doi: 10.3969/j.issn.0253-2409.2019.06.013

    ZHOU Hao, LI Meng-yu, ZHAO Hui-shuang, WU Shi-guo, YE Bi-chao, SU Ya-xin. Selective catalytic reduction of nitric oxide with propylene in excess oxygen over Fe-Mn /Beta catalysts[J]. J Fuel Chem Technol,2019,47(6):751−761. doi: 10.3969/j.issn.0253-2409.2019.06.013
    [2] ERME K, JOGI I. Metal oxides as catalysts and adsorbents in ozone oxidation of NOx[J]. Environ Sci Technol,2019,53(9):5266−5271. doi: 10.1021/acs.est.8b07307
    [3] SHANG H, LI M, LI H, HUANG S, MAO C, AI Z, ZHANG L. Oxygen vacancies promoted the selective photocatalytic removal of NO with blue TiO2 via simultaneous molecular oxygen activation and photogenerated hole annihilation[J]. Environ Sci Technol,2019,53(11):6444−6453. doi: 10.1021/acs.est.8b07322
    [4] 楚增勇, 原博, 颜廷楠. g-C3N4光催化性能的研究进展[J]. 无机材料学报,2014,29(8):785−794. doi: 10.15541/jim20130633

    CHU Zeng-yong, YUAN Bo, YAN Ting-nan. Recent progress in photocatalysis of g-C3N4[J]. J Inorg Mater,2014,29(8):785−794. doi: 10.15541/jim20130633
    [5] 刘帅, 刘进博, 李旭贺, 张健, 鄢景森, 梁飞雪, 王彦娟. WO3/ g-C3N4异质结催化剂的制备及其氧化脱硫性能[J]. 燃料化学学报,2019,47(7):852−862. doi: 10.3969/j.issn.0253-2409.2019.07.010

    LIU Shuai, LIU Jin-bo, LI Xu-he, ZHANG Jian, YAN Jing-sen, LIANG Fei-xue, WANG Yan-juan. Preparation of WO3/ g-C3N4 heterojunction catalyst and its oxidative desulfurization performance[J]. J Fuel Chem Technol,2019,47(7):852−862. doi: 10.3969/j.issn.0253-2409.2019.07.010
    [6] 刘优昌, 王亮. g-C3N4/BiOBr异质结光催化剂的制备与可见光催化活性[J]. 燃料化学学报,2018,46(9):1146−1152. doi: 10.3969/j.issn.0253-2409.2018.09.014

    LIU You-chang, WANG Liang. Preparation of p-n heterojunction g-C3N4/BiOBr and its photocatalytic performance under visible light[J]. J Fuel Chem Technol,2018,46(9):1146−1152. doi: 10.3969/j.issn.0253-2409.2018.09.014
    [7] 李娟. g-C3N4基复合光催化材料的制备及性能研究[D]. 西安: 西北大学, 2017.

    LI Juan. Synthesis and photocatalytic performance of g-C3N4-based composites[D]. Xi’an: Northwest University, 2017.
    [8] DONG G, ZHAO L, WU X, ZHU M, WANG F. Photocatalysis removing of NO based on modified carbon nitride: The effect of celestite mineral particles[J]. Appl Catal B: Environ,2019,245:459−468. doi: 10.1016/j.apcatb.2019.01.013
    [9] CHEN Y, WANG Z, WANG H, LU J, YU S, JIANG H. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: The roles of photothermal effect and Pt electronic state[J]. J Am Chem Soc,2017,139(5):2035−2044. doi: 10.1021/jacs.6b12074
    [10] 何柳. ZIF-8模板法合成复合纳米粒子及其性能研究[D]. 长春: 东北师范大学, 2015.

    HE Liu. Preparation and properties of nanocomposites using ZIF-8 as templates[D]. Changchun: Northeast Normal University, 2015.
    [11] 李庆朝. 金属-有机骨架材料ZIF-8的改性及其在CO2捕获-转化中的应用[D]. 太原: 太原理工大学, 2017.

    LI Qing-chao. Modification of metal-organic frameworks ZIF-8 and their application in CO2 capture and conversion[D]. Taiyuan: Taiyuan University of Technology, 2017.
    [12] DONG S, LIU Z, LIU R, CHEN L, CHEN J, XU Y. Visible-light-induced catalytic transfer hydrogenation of aromatic aldehydes by palladium immobilized on amine-functionalized iron-based metal-organic frameworks[J]. ACS Appl Nano Mater,2018,1(8):4247−4257. doi: 10.1021/acsanm.8b01039
    [13] ZHU P, YIN X, GAO X, DONG G, XU J, WANG C. Enhanced photocatalytic NO removal and toxic NO2 production inhibition over ZIF-8-derived ZnO nanoparticles with controllable amount of oxygen vacancies[J]. Chin J Catal,2021,42(1):175−183. doi: 10.1016/S1872-2067(20)63592-6
    [14] 彭岩. ZIF-8及其复合结构的控制合成和催化性能研究[D]. 大连: 大连理工大学, 2015.

    PENG Yan. Controllable synthesis and catalytic properties on ZIF-8 and its composites[D]. Dalian: Dalian University of Technology, 2015.
    [15] 胡江亮, 孙天军, 任新宇, 常丽萍, 王树东. ZIF-8吸附剂上CH4/N2的吸附分离性能与热力学性质[J]. 燃料化学学报,2013,41(6):754−760. doi: 10.3969/j.issn.0253-2409.2013.06.018

    HU Jiang-liang, SUN Tian-jun, REN Xin-yu, CHANG Li-ping, WANG Shu-dong. Separation of CH4/N2 on ZIF-8 adsorbent and its thermodynamic properties[J]. J Fuel Chem Technol,2013,41(6):754−760. doi: 10.3969/j.issn.0253-2409.2013.06.018
    [16] YANG X, WEN Z, WU Z, LUO X. Synthesis of ZnO/ZIF-8 hybrid photocatalysts derived from ZIF-8 with enhanced photocatalytic activity[J]. Inorg Chem Front,2018,5(3):687−693. doi: 10.1039/C7QI00752C
    [17] ZHOU M, DONG G, YU F, HUANG Y. The deep oxidation of NO was realized by Sr multi-site doped g-C3N4 via photocatalytic method[J]. Appl Catal B: Environ,2019,256:117825. doi: 10.1016/j.apcatb.2019.117825
    [18] 董国辉. g-C3N4光催化氧化还原性能调控及其环境催化性能增强[D]. 武汉: 华中师范大学, 2015.

    DONG Guo-hui. Tuning photocatalytic redox ability of g-C3N4 for its environmental catalytic activity enhancement[D]. Wuhan: Central China Normal University, 2015.
    [19] 赵莉. g-C3N4/Fe3O4/ZIF-8纳米复合材料的合成及其对孔雀石绿和镉离子吸附性能的研究[D]. 泰安: 山东农业大学, 2019.

    ZHAO Li. Synthesis of g-C3N4/Fe3O4/ZIF-8 nanocomposites and study on their adsorption properties for malachite green and Cd2+[D]. Tai'an: Shandong Agricultural University, 2019.
    [20] LIU S, CHEN F, LI S, PENG X, XIONG Y. Enhanced photocatalytic conversion of greenhouse gas CO2 into solar fuels over g-C3N4 nanotubes with decorated transparent ZIF-8 nanoclusters[J]. Appl Catal B: Environ,2017,211:1−10. doi: 10.1016/j.apcatb.2017.04.009
    [21] GONG Y, ZHAO X, ZHANG H, YANG B, XIAO K, GUO T, ZHANG J, SHAO H, WANG Y, YU G. MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation[J]. Appl Catal B: Environ,2018,233:35−45. doi: 10.1016/j.apcatb.2018.03.077
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1797
  • HTML全文浏览量:  164
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 修回日期:  2022-05-31
  • 录用日期:  2022-06-01
  • 网络出版日期:  2022-06-23
  • 刊出日期:  2022-12-28

目录

    /

    返回文章
    返回