留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合成气制低碳烯烃串联反应中Zn-Al氧化物的制备及性能

李保珍 孟凡会 王丽娜 李忠

李保珍, 孟凡会, 王丽娜, 李忠. 合成气制低碳烯烃串联反应中Zn-Al氧化物的制备及性能[J]. 燃料化学学报(中英文), 2023, 51(1): 111-119. doi: 10.19906/j.cnki.JFCT.2022049
引用本文: 李保珍, 孟凡会, 王丽娜, 李忠. 合成气制低碳烯烃串联反应中Zn-Al氧化物的制备及性能[J]. 燃料化学学报(中英文), 2023, 51(1): 111-119. doi: 10.19906/j.cnki.JFCT.2022049
LI Bao-zhen, MENG Fan-hui, WANG Li-na, LI Zhong. Study on preparation and catalytic performance of Zn-Al oxides for tandem reaction of syngas conversion into light olefins[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 111-119. doi: 10.19906/j.cnki.JFCT.2022049
Citation: LI Bao-zhen, MENG Fan-hui, WANG Li-na, LI Zhong. Study on preparation and catalytic performance of Zn-Al oxides for tandem reaction of syngas conversion into light olefins[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 111-119. doi: 10.19906/j.cnki.JFCT.2022049

合成气制低碳烯烃串联反应中Zn-Al氧化物的制备及性能

doi: 10.19906/j.cnki.JFCT.2022049
基金项目: 山西省自然科学基金(202103021224073)和山西省重点研发计划(国际科技合作)(201803D421011)资助
详细信息
    通讯作者:

    Tel: 0351-6018526, E-mail: mengfanhui@tyut.edu.cn

    lizhong@tyut.edu.cn

  • 中图分类号: O643.3

Study on preparation and catalytic performance of Zn-Al oxides for tandem reaction of syngas conversion into light olefins

Funds: The project was supported by the Natural Science Foundation of Shanxi Province (202103021224073) and the Key Research and Development Project of Shanxi Province (201803D421011)
  • 摘要: 以工业拟薄水铝石为铝源,通过微波辅助蒸发诱导自组装(M-EISA)法制备了一系列不同Zn/Al原子比的Zn-Al氧化物,并与SAPO-18分子筛物理混合后考察其催化合成气制低碳烯烃(${\rm{C}}_2^= -{\rm{C}}_4^=$)反应性能。采用X射线衍射(XRD)、透射电镜(TEM)、N2吸附-脱附、CO和H2程序升温脱附(CO-TPD、H2-TPD)、X射线光电子能谱(XPS)等进行表征。M-EISA法制备的Zn-Al氧化物随Zn/Al原子比的增加,比表面积和孔容逐渐下降,平均孔径先增大后降低。与浸渍(IP)法制备的ZnAl-IP相比,Zn/Al原子比为1∶2的ZnAl2Ox样品中Zn分散度高,形成的ZnAl2O4尖晶石结构产生了更多的氧空位。催化结果表明,M-EISA法制备的Zn-Al样品活性随Zn/Al原子比的增加而先增加后减小,${\rm{C}}_2^= -{\rm{C}}_4^= $选择性逐渐降低。ZnAl2Ox样品的CO转化率最高(34.8%),且反应50 h未见明显失活,催化性能明显优于ZnAl-IP样品。
  • 图  1  不同Zn-Al氧化物XRD谱图及ZnAl2Ox氧化物的原位XRD谱图

    Figure  1  (a) XRD patterns of different Zn-Al oxides; (b) in-situ XRD patterns of ZnAl2Ox oxides treated by H2 at different temperatures and time

    图  2  不同Zn-Al氧化物的TEM及HR-TEM照片

    Figure  2  TEM and HR-TEM images of different Zn-Al oxides((a), (b)): ZnAl2Ox; ((c), (d)): ZnAl5Ox; ((e), (f)): ZnAl-IP

    图  3  不同Zn-Al氧化物的N2吸附-脱附等温线

    Figure  3  N2 adsorption-desorption isotherms of different Zn-Al oxides

    图  4  不同Zn-Al氧化物的化学吸附曲线

    Figure  4  TPD profiles of different Zn-Al oxides(a): CO-TPD; (b): H2-TPD; (c): CO and H2 TPD profiles in the temperature range of 180−400 ℃ and hold at 400 ℃ for 40 min

    图  5  Zn-Al氧化物的H2-TPR谱图

    Figure  5  H2-TPR profiles of Zn-Al oxides

    图  6  ZnAl2Ox及ZnAl-IP氧化物的(a)O 1s XPS谱图和(b)EPR谱图

    Figure  6  (a) O 1s XPS spectra and (b) EPR spectra of ZnAl2Ox and ZnAl-IP oxides

    图  7  ZnAl2Ox及ZnAl-IP与SAPO-18结合后催化STO反应的稳定性

    Figure  7  Catalytic stability of ZnAl2Ox and ZnAl-IP combined with SAPO-18 for STO reaction (a): ZnAl2Ox/SAPO-18; (b): ZnAl-IP/SAPO-18

    Reaction condition: 400 ℃, 2.5 MPa, 5000 mL/(gcat·h), weight ratio of Zn-Al to SAPO-18(0.1) is 3∶1,30−60 mesh

    表  1  不同Zn-Al氧化物的织构性质

    Table  1  Textural properties of different Zn-Al oxides

    SampleSBETa/(m2·g−1)vtotalb/(cm3·g−1)daveragec/nm

    Al2O3

    196

    0.55

    7.2

    ZnAl-IP

    111

    0.30

    7.0

    ZnAl5Ox

    126

    0.85

    19.1

    ZnAl3Ox

    89

    0.70

    21.4

    ZnAl2Ox

    74

    0.63

    23.5

    ZnAl1Ox

    63

    0.56

    23.4

    ZnAl0.5Ox

    52

    0.34

    18.8
    a: Calculated by the BET equation, b: BJH desorption pore volume, c: BJH desorption average pore diameter
    下载: 导出CSV

    表  2  不同Zn-Al氧化物的CO和H2脱附量

    Table  2  Amounts of desorbed CO and H2 of different Zn-Al oxides

    SampleAmounts of desorbed CO and H2/(μmol·g−1)
    a COb H2c COc H2
    ZnO15.7
    ZnAl0.5Ox165.878.2
    ZnAl2Ox311.6100.9148.753.1
    ZnAl5Ox359.7141.7
    Al2O3355.7139.2
    ZnAl-IP272.5120.496.436.7
    a: obtained from Figure 4(a), b: obtained from Figure 4(b), c: obtained from Figure 4(c)
    下载: 导出CSV

    表  3  不同Zn-Al氧化物与SAPO-18结合后催化STO的反应性能

    Table  3  Catalytic performance of different Zn-Al oxides combined with SAPO-18 for STO reaction

    Metal oxidesCO conv. /%Hydrocarbons distribution /% CO2 sel. /%STY /
    (mL·g$^{- {1} }_{ {\rm{cat} } }$·h−1
    CH4${\rm{C} }_{2}^= -{\rm{C} }_{4}^=$${\rm{C} }_{2}^{0} -{\rm{C} }_{4}^{0}$C5 +

    Al2O3

    2.4

    53.4

    19.0

    22.4

    5.3

    38.3

    3.8
    ZnAl5Ox16.27.574.712.85.145.788.7
    ZnAl3Ox32.78.373.014.24.543.1183.4
    ZnAl2Ox34.89.070.715.35.043.9186.3
    ZnAl1Ox27.711.263.321.64.047.2125.0
    ZnAl0.5Ox23.812.262.121.24.644.8110.1
    ZnAl-IP14.914.960.219.65.345.066.6
    Reaction conditions: 400 ℃, 3.0 MPa, 4500 mL/(gcat·h), weight ratio of oxides to SAPO-18(0.1) = 2∶1, the data were acquired after a 12 h reaction on stream
    下载: 导出CSV
  • [1] ZHAO Z, JIANG J, WANG F. An economic analysis of twenty light olefin production pathways[J]. J Energy Chem,2021,56:193−202. doi: 10.1016/j.jechem.2020.04.021
    [2] 陈嵩嵩, 张国帅, 霍锋, 张军平. 煤基大宗化学品市场及产业发展趋势[J]. 化工进展,2020,39(12):5009−5020. doi: 10.16085/j.issn.1000-6613.2020-0841

    CHEN Song-song, ZHANG Guo-shuai, HUO Feng, ZHANG Jun-ping. Market and technology development trends of coal-based bulk chemicals[J]. Chem Ind Eng Prog,2020,39(12):5009−5020. doi: 10.16085/j.issn.1000-6613.2020-0841
    [3] 杨光杰, 李飞, 王旭峰, 谷小虎. 合成气制低碳烯烃研究进展[J]. 现代化工,2020,40(4):61−64. doi: 10.16606/j.cnki.issn0253-4320.2020.04.014

    YANG Guang-jie, LI Fei, WANG Xu-feng, GU Xiao-hu. Research progress in syngas to light olefins[J]. Mod Chem Ind,2020,40(4):61−64. doi: 10.16606/j.cnki.issn0253-4320.2020.04.014
    [4] TIAN P, WEI Y, YE M LIU Z. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catal,2015,5(3):1922−1938. doi: 10.1021/acscatal.5b00007
    [5] ZHOU W, CHENG K, KANG J, ZHOU C, SUBRAMANIAN V, ZHANG Q, WANG Y. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chem Soc Rev,2019,48(12):3193−3228. doi: 10.1039/C8CS00502H
    [6] JIAO F, LI J, PAN X, XIAO J, LI H, MA H, WEI M, PAN Y, ZHOU Z, LI M, MIAO S, LI J, ZHU Y, XIAO D, HE T, YANG J, QI F, FU Q, BAO X. Selective conversion of syngas to light olefins[J]. Science,2016,351(6277):1065−1068. doi: 10.1126/science.aaf1835
    [7] CHENG K, GU B, LIU X, KANG J, ZHANG Q, WANG Y. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon–carbon coupling[J]. Angew Chem Int Ed,2016,55(15):4725−4728. doi: 10.1002/anie.201601208
    [8] MENG F, LI X, ZHANG P, YANG L, YANG G, MA P, LI Z. Highly active ternary oxide ZrCeZnOx combined with SAPO-34 zeolite for direct conversion of syngas into light olefins[J]. Catal Today,2021,368:118−125. doi: 10.1016/j.cattod.2020.03.023
    [9] HUANG Y, MA H, XU Z, QIAN W, ZHANG H, YING W. Direct conversion of syngas to light olefins over a ZnCrOx + H-SSZ-13 bifunctional catalyst[J]. ACS Omega,2021,6(16):10953−10962. doi: 10.1021/acsomega.1c00751
    [10] SU J, WANG D, WANG Y, ZHOU H, LIU C, LIU S, WANG C, YANG W, XIE Z, HE M. Direct conversion of syngas into light olefins over zirconium-doped indium(III) oxide and SAPO-34 bifunctional catalysts: Design of oxide component and construction of reaction network[J]. ChemCatChem,2018,10(7):1536−1541. doi: 10.1002/cctc.201702054
    [11] DU C, GAPU CHIZEMA L, HONDO E, TONG M, MA Q, GAO X, YANG R, LU P, TSUBAKI N. One-step conversion of syngas to light olefins over bifunctional metal-zeolite catalyst[J]. Chin J Chem Eng,2021,36:101−110. doi: 10.1016/j.cjche.2020.09.004
    [12] CHEN W, LIN T, DAI Y, AN Y, YU F, ZHONG L, LI S, SUN Y. Recent advances in the investigation of nanoeffects of Fischer-Tropsch catalysts[J]. Catal Today,2018,311:8−22. doi: 10.1016/j.cattod.2017.09.019
    [13] PAN X, JIAO F, MIAO D, BAO X. Oxide–zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis[J]. Chem Rev,2021,121(11):6588−6609. doi: 10.1021/acs.chemrev.0c01012
    [14] 史永永, 蒋东海, 杨春亮, 易芸, 刘飞, 林倩, 曹建新. 双功能催化剂在合成气一步法制低碳烯烃中的研究进展[J]. 应用化工,2021,50(4):1060−1063. doi: 10.3969/j.issn.1671-3206.2021.04.042

    SHI Yong-yong, JIANG Dong-hai, YANG Chun-liang, YI Yun, LIU Fei, LIN Qian, CAO Jian-xin. Research progress of bifunctional catalyst for one-step coversion from syngas to light olefins[J]. Appl Chem Ind,2021,50(4):1060−1063. doi: 10.3969/j.issn.1671-3206.2021.04.042
    [15] ZHANG X, ZHANG G, LIU W, YUAN F, WANG J, ZHU J, JIANG X, ZHANG A, DING F, SONG C, GUO X. Reaction-driven surface reconstruction of ZnAl2O4 boosts the methanol selectivity in CO2 catalytic hydrogenation[J]. Appl Catal B: Environ,2021,284:119700. doi: 10.1016/j.apcatb.2020.119700
    [16] ZHANG P, MENG F, LI X, YANG L, MA P, LI Z. Excellent selectivity for direct conversion of syngas to light olefins over a Mn-Ga oxide and SAPO-34 bifunctional catalyst[J]. Catal Sci Technol,2019,9(20):5577−5581. doi: 10.1039/C9CY01348B
    [17] CHEN H, LIU Z, LI N, JIAO F, CHEN Y, ZHAO Z, GUO M, LIU X, HAN X, PAN X, GONG X, HOU G, BAO X. A mechanistic study of syngas conversion to light olefins over OXZEO bifunctional catalysts: Insights into the initial carbon–carbon bond formation on the oxide[J]. Catal Sci Technol,2022,12(4):1289−1295. doi: 10.1039/D1CY01807H
    [18] LIU Y, DENG D, BAO X. Catalysis for selected C1 chemistry[J]. Chem,2020,6(10):2497−2514. doi: 10.1016/j.chempr.2020.08.026
    [19] LIU X, ZHOU W, YANG Y, CHENG K, KANG J, ZHANG L, ZHANG G, MIN X, ZHANG Q, WANG Y. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci,2018,9(20):4708−4718. doi: 10.1039/C8SC01597J
    [20] WANG J, TANG C, LI G, HAN Z, LI Z, LIU H, CHENG F, LI C. High-performance MaZrOx (Ma = Cd, Ga) solid-solution catalysts for CO2 hydrogenation to methanol[J]. ACS Catal,2019,9(11):10253−10259. doi: 10.1021/acscatal.9b03449
    [21] SU J, ZHOU H, LIU S, WANG C, JIAO W, WANG Y, LIU C, YE Y, ZHANG L, ZHAO Y, LIU H, WANG D, YANG W, XIE Z, HE M. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts[J]. Nat Commun,2019,10(1):1297. doi: 10.1038/s41467-019-09336-1
    [22] HU W, WANG C, WANG Y, KE J, YANG G, DU Y, YANG W. First-principles-based microkinetic simulations of syngas to methanol conversion on ZnAl2O4 spinel oxide[J]. Appl Surf Sci,2021,569:151064. doi: 10.1016/j.apsusc.2021.151064
    [23] MOU J, FAN X, LIU F, WANG X, ZHAO T, CHEN P, LI Z, YANG C, CAO J. CO2 hydrogenation to lower olefins over Mn2O3-ZnO/SAPO-34 tandem catalysts[J]. Chem Eng J,2021,421:129978. doi: 10.1016/j.cej.2021.129978
    [24] YE A, LI Z, DING J, XIONG W, HUANG W. Synergistic catalysis of Al and Zn sites of spinel ZnAl2O4 catalyst for CO hydrogenation to methanol and dimethyl ether[J]. ACS Catal,2021,11(15):10014−10019. doi: 10.1021/acscatal.1c02742
    [25] LIU X, WANG M, YIN H, HU J, CHENG K, KANG J, ZHANG Q, WANG Y. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J]. ACS Catal,2020,10(15):8303−8314. doi: 10.1021/acscatal.0c01579
    [26] RAVEENDRA G, LI C, CHENG Y, MENG F, LI Z. Direct transformation of syngas to lower olefins synthesis over hybrid Zn-Al2O3/SAPO-34 catalysts[J]. New J Chem,2018,42(6):4419−4431. doi: 10.1039/C7NJ04734G
    [27] RAVEENDRA G, MA B, LIU X, GUO Y, WANG Y. Syngas to light olefin synthesis over La doped ZnxAlyOz composite and SAPO-34 hybrid catalysts[J]. Catal Sci Technol,2021,11(9):3231−3240. doi: 10.1039/D0CY02277B
    [28] RAVEENDRA G, LI C, LIU B, CHENG Y, MENG F, LI Z. Synthesis of lower olefins from syngas over Zn/Al2O3-SAPO-34 hybrid catalysts: role of doped Zr and influence of the Zn/Al2O3 ratio[J]. Catal Sci Technol,2018,8(14):3527−3538. doi: 10.1039/C8CY00574E
    [29] STRACHOWSKI T, GRZANKA E, MIZERACKI J, CHLANDA A, BARAN M, MAŁEK M, NIEDZIAŁEK M. Microwave-assisted hydrothermal synthesis of zinc-aluminum spinel ZnAl2O4[J]. Materials,2022,15(1):245.
    [30] TIAN S, TAN L, WU Y, KOU Y, XIE H, TSUBAKI N, TAN Y. The role of different state ZnO over non-stoichiometric Zn-Cr spinel catalysts for isobutanol synthesis from syngas[J]. Appl Catal A: Gen,2017,536:57−66. doi: 10.1016/j.apcata.2017.02.016
    [31] BESZEDA I, BEKE D L, KAGANOVSKII Y. Kinetics of growth and lateral spreading of a spinel layer around NiO particles on Al2O3 substrate[J]. Surf Sci,2004,569(1):5−11.
    [32] FULVIO P F, BROSEY R I, JARONIEC M. Synthesis of mesoporous alumina from boehmite in the presence of triblock copolymer[J]. ACS Appl Mater Inter,2010,2(2):588−593. doi: 10.1021/am9009023
    [33] GONÇALVES A A S, COSTA M J F, ZHANG L, CIESIELCZYK F, JARONIEC M. One-pot synthesis of MeAl2O4 (Me = Ni, Co, or Cu) supported on γ-Al2O3 with ultralarge mesopores: enhancing interfacial defects in γ-Al2O3 to facilitate the formation of spinel structures at lower temperatures[J]. Chem Mater,2018,30(2):436−446. doi: 10.1021/acs.chemmater.7b04353
    [34] SONG Z, WANG Q, GUO C, LI S, YAN W, JIAO W, QIU L, YAN X, LI R. Improved effect of Fe on the stable NiFe/Al2O3 catalyst in low-temperature dry reforming of methane[J]. Ind Eng Chem Res,2020,59(39):17250−17258. doi: 10.1021/acs.iecr.0c01204
    [35] 杨浪浪, 孟凡会, 张鹏, 梁晓彤, 李忠. ZrCdOx/SAPO-18双功能催化剂催化CO2加氢合成低碳烯烃性能[J]. 无机化学学报,2021,37(3):448−456. doi: 10.11862/CJIC.2021.067

    YANG Lang-lang, MENG Fan-hui, ZHANG Peng, LIANG Xiao-tong, LI Zhong. Catalytic performance for CO2 hydrogenation to light olefins over ZrCdOx/SAPO-18 bifunctional catalyst[J]. Chin J Inorg Chem,2021,37(3):448−456. doi: 10.11862/CJIC.2021.067
    [36] ZHANG P, MENG F, YANG L, YANG G, LIANG X, LI Z. Syngas to olefins over a CrMnGa/SAPO-34 bifunctional catalyst: Effect of Cr and Cr/Mn ratio[J]. Ind Eng Chem Res,2021,60(36):13214−13222. doi: 10.1021/acs.iecr.1c02150
    [37] PARK Y, CHO K, KIM S. Thermoelectric characteristics of glass fibers coated with ZnO and Al-doped ZnO[J]. Mater Res Bull,2017,96:246−249. doi: 10.1016/j.materresbull.2017.03.007
    [38] JAIN M, MANJU, GUNDIMEDA A, KUMAR S, GUPTA G, WON S O, CHAE K H, VIJ A, THAKUR A. Defect induced broadband visible to near-infrared luminescence in ZnAl2O4 nanocrystals[J]. Appl Surf Sci,2019,480:945−950. doi: 10.1016/j.apsusc.2019.02.198
    [39] PAN L, WANG Y, YIN L, TOWNSEND P D. Influence of co-doping germanium ions on the long persistent near-infrared luminescence of ZnAl2O4: Cr3+[J]. Opt Mater,2021,119:111390. doi: 10.1016/j.optmat.2021.111390
    [40] PRIYA R, NEGI A, SINGLA S, PANDEY O P. Luminescent studies of Eu doped ZnAl2O4 spinels synthesized by low-temperature combustion route[J]. Optik,2020,204:164173. doi: 10.1016/j.ijleo.2020.164173
    [41] PRINS, ROEL. On the structure of γ-Al2O3[J]. J Catal,2020,392:336−346. doi: 10.1016/j.jcat.2020.10.010
    [42] QI J, HU X. The loss of ZnO as the support for metal catalysts by H2 reduction[J]. Phys Chem Chem Phys,2020,22(7):3953−3958. doi: 10.1039/C9CP06093F
    [43] JAIN M, MANJU, KUMAR R, WON S O, CHAE K H, VIJ A, THAKUR A. Defect states and kinetic parameter analysis of ZnAl2O4 nanocrystals by X-ray photoelectron spectroscopy and thermoluminescence[J]. Sci Rep,2020,10(1):385. doi: 10.1038/s41598-019-57227-8
    [44] XIE Z, LI Z, TANG P, SONG Y, ZHAO Z, KONG L, FAN X, XIAO X. The effect of oxygen vacancies on the coordinatively unsaturated Al-O acid-base pairs for propane dehydrogenation[J]. J Catal,2021,397:172−182. doi: 10.1016/j.jcat.2021.03.033
    [45] GUPTA P, SAHNI M, CHAUHAN S. Manifestation of multifunction capabilities by stabilizing cadmium together with zinc and aluminum in spinel oxide[J]. J Mater Sci: Mater Electron,2021,32(11):15317−15330. doi: 10.1007/s10854-021-06081-4
    [46] LI Y, HU J, XU J, ZHENG Y, CHEN M, WAN H, FU Q, YANG F, BAO X. Activation of CO and surface carbon species for conversion of syngas to light olefins on ZnCrOx-Al2O3 catalysts[J]. Appl Surf Sci,2019,494:353−360. doi: 10.1016/j.apsusc.2019.07.082
    [47] XU D, HONG X, LIU G. Highly dispersed metal doping to ZnZr oxide catalyst for CO2 hydrogenation to methanol: Insight into hydrogen spillover[J]. J Catal,2021,393:207−214. doi: 10.1016/j.jcat.2020.11.039
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1901
  • HTML全文浏览量:  86
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-20
  • 修回日期:  2022-06-11
  • 录用日期:  2022-06-16
  • 网络出版日期:  2022-09-26
  • 刊出日期:  2023-01-10

目录

    /

    返回文章
    返回