留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaO-Ca3Al2O6@Ni-SiO2复合催化剂制备及制氢性能

许凯 刘璐 荆洁颖 冯杰 李文英

许凯, 刘璐, 荆洁颖, 冯杰, 李文英. CaO-Ca3Al2O6@Ni-SiO2复合催化剂制备及制氢性能[J]. 燃料化学学报(中英文), 2022, 50(12): 1619-1628. doi: 10.19906/j.cnki.JFCT.2022057
引用本文: 许凯, 刘璐, 荆洁颖, 冯杰, 李文英. CaO-Ca3Al2O6@Ni-SiO2复合催化剂制备及制氢性能[J]. 燃料化学学报(中英文), 2022, 50(12): 1619-1628. doi: 10.19906/j.cnki.JFCT.2022057
XU Kai, LIU Lu, JING Jie-ying, FENG Jie, LI Wen-ying. Preparation and hydrogen production performance of CaO-Ca3Al2O6@Ni-SiO2 composite catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1619-1628. doi: 10.19906/j.cnki.JFCT.2022057
Citation: XU Kai, LIU Lu, JING Jie-ying, FENG Jie, LI Wen-ying. Preparation and hydrogen production performance of CaO-Ca3Al2O6@Ni-SiO2 composite catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1619-1628. doi: 10.19906/j.cnki.JFCT.2022057

CaO-Ca3Al2O6@Ni-SiO2复合催化剂制备及制氢性能

doi: 10.19906/j.cnki.JFCT.2022057
基金项目: 国家重点研发计划(2019YFC1906804-03)资助
详细信息
    作者简介:

    许凯(1997-),男,山西临汾人,硕士研究生,化学工程专业,主要从事能源化工领域催化剂的研制

    通讯作者:

    Tel: 86-351-6018453, E-mail: jingjieying@tyut.edu.cn

  • 中图分类号: TQ426

Preparation and hydrogen production performance of CaO-Ca3Al2O6@Ni-SiO2 composite catalyst

Funds: The project was supported by National Key Research and Development Program of China (2019YFC1906804-03)
  • 摘要: 吸附强化CH4/H2O重整制氢技术通过原位移除反应产生的CO2实现一步法制备高浓度H2,但该技术常用复合催化剂中的吸附组分CaO在吸脱附CO2时的体积变化会造成复合催化剂结构的坍塌,同时活性组分Ni也被反应生成的CaCO3包埋,造成催化和吸附性能的下降,严重影响制取H2的浓度。本研究利用阳离子表面活性剂辅助刻蚀的机理采用自模板法制备了CaO-Ca3Al2O6@Ni-SiO2复合催化剂。在吸附强化CH4/H2O重整制氢实验中,该复合催化剂制氢浓度达到99.6%,且10次循环后制氢浓度为97.3%,其高活性高稳定性归因于复合催化剂中的吸附组分CaO-Ca3Al2O6在反应-再生循环过程中体积反复膨胀收缩的过程均在SiO2空腔内进行,不会造成复合催化剂结构的坍塌,同时复合催化剂制备过程中采用SiO2包覆活性组分Ni防止了其在脱碳再生过程中团聚失活,但结构表征发现,复合催化剂的催化组分中仅有一部分是以Ni为核、SiO2为壳的核壳结构,还存在部分Ni直接负载在壳层SiO2上,这是导致10次循环反应中CH4转化率从99.5%降至91.8%的原因。
  • FIG. 2028.  FIG. 2028.

    FIG. 2028.  FIG. 2028.

    图  1  复合催化剂CaO-Ca3Al2O6@Ni-SiO2的形成过程

    Figure  1  Formation process of composite catalyst CaO-Ca3Al2O6@Ni-SiO2

    图  2  SiO2对复合催化剂CO2吸附性能的影响

    Figure  2  Effect of SiO2 on CO2 adsorption performance of composite catalyst

    图  3  单次反应和10次反应的各产物含量和CH4转化率

    Figure  3  Concentration of each product and CH4 conversion in the first and tenth reactions (a): the first reaction; (b): 10 reactions

    图  4  Ni/ CaO-Ca3Al2O6重整反应中各产物含量和CH4转化率

    Figure  4  Concentration of each product and CH4 conversion in the reforming reaction of Ni/ CaO-Ca3Al2O6

    图  5  反应前后复合催化剂的XRD谱图

    Figure  5  XRD patterns of the composite catalyst before and after the reaction

    图  6  不同预处理温度下复合催化剂的H2-TPR谱图

    Figure  6  H2-TPR profiles of composite catalysts at different pretreatment temperatures

    (a): H2-TPR profile of CaO-Ca3Al2O6@Ni-SiO2 and CaO-Ca3Al2O6 under 300 ℃ pretreatment; (b): H2-TPR profile of CaO-Ca3Al2O6@Ni-SiO2 under 600 ℃ pretreatment

    图  7  复合催化剂CaO-Ca3Al2O6@Ni-SiO2的失重

    Figure  7  Weight loss of composite catalyst CaO-Ca3Al2O6@Ni-SiO2

    图  8  反应前后CaO-Ca3Al2O6@Ni-SiO2的SEM图和EDS图

    Figure  8  SEM and EDS mapping of CaO-Ca3Al2O6@Ni-SiO2

    ((a), (b)): Before reaction;((c), (d)): After reaction

    图  9  反应前后复合催化剂的TEM照片((a)、(b)) 反应前CaO-Ca3Al2O6@Ni-SiO2;((c)、(d)) 反应后CaO-Ca3Al2O6@Ni-SiO2

    Figure  9  TEM images of composite catalysts

    ((a), (b): Before reaction CaO-Ca3Al2O6@SiO2;((c), (d)): After reaction CaO-Ca3Al2O6 @Ni-SiO2)

    图  10  CaO-Ca3Al2O6@Ni-SiO2复合催化剂的结构

    Figure  10  Structure of CaO-Ca3Al2O6@Ni-SiO2 composite catalyst

    表  1  不同复合催化剂的制氢性能

    Table  1  Hydrogen production performance of different composite catalysts

    Catalysis Reaction condition Regeneration condition CH4
    conversion/%
    H2
    concentration/%
    Tenth cyclic reaction Number of cycles
    temp./℃ H2O/CH4 temp./
    atmosphere /(mL·min−1) initial stabilization initial stabilization CH4/
    %
    H2/
    %
    CaO-Ca3Al2O6@Ni-SiO2 600 4.8 750 N2(100) 99.5 91.8 99.6 97.3 91.8 97.3 10
    Ru/Ca3Al2O6-CaO[20] 550 4 750 N2(50) 98.0 97.0 98.1 96.0 97.0 96.0 10
    Ni-CaO-Ca12Al14O33[21] 600 3 88.0 1
    CaO-Ca12Al14O33-Ni[22] 600 3 750 N2 96.5 93.2 90.9 87.5 93.5 87.7 10
    CaO-NiO/CaZrO3[23] 650 3 800 air 95.4 97.5 94.3 85.6 97.0 95.3 10
    Ni-CaO-Ca12Al14O33[24] 650 3 96.0 90.0 1
    Ce-Ni10Co30/HTlc[25] 500 6 500 excessive H2O 95.7 99.0 90.0 93.4 21
    Co3O4/SiO2/CeO2-CaO[26] 550 3 750 Ar 98.8 97.6 96.0 93.0 8
    Ni/Al2O3/CaO[27] 600 3 98.0 95.0 1
    Ni-CaO-Ca12Al14O33[28] 640 3 900 N2 89.0 82.0 90.0 85.0 4
    CaO-Ca9Al6O18@
    Ca5Al6O14/Ni[11]
    650 3 800 N2(100) 93.3 90.5 93.5 93.5 93.5 60
    Ni@TiO2-CaO/Al2O3[12] 650 4 800 N2 86.3 92.7 88.0 92.0 87.2 91.5 36
    下载: 导出CSV

    表  2  复合催化剂CaO-Ca3Al2O6@Ni-SiO2的组成

    Table  2  Composition of composite catalyst CaO-Ca3Al2O6@Ni-SiO2

    Substance Ni CaO Ca3Al2O6 SiO2
    Content*w/% 8.98 66.84 19.98 4.2
    *The composition measured by ICP-OES and calculated by normalization method
    下载: 导出CSV
  • [1] HAN C, P. HARRISON D. Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen[J]. Chem Eng Sci,1994,49(24):5875−5883. doi: 10.1016/0009-2509(94)00266-5
    [2] HERCE C, CORTES C, STENDARDO S. Numerical simulation of a bubbling fluidized bed reactor for sorption-enhanced steam methane reforming under industrially relevant conditions: Effect of sorbent (dolomite and CaO-Ca12Al14O33) and operational parameters[J]. Fuel Process Technol,2019,186:137−148. doi: 10.1016/j.fuproc.2019.01.003
    [3] 厉勇, 张英, 王元华. 甲烷水蒸气重整技术研究现状及进展[J]. 炼油技术与工程,2019,49(7):1−7. doi: 10.3969/j.issn.1002-106X.2019.07.001

    LI Yong, ZHANG Ying, WANG Yuan-hua. Research status and progress of methane steam reforming technology[J]. Petrol Refin Eng,2019,49(7):1−7. doi: 10.3969/j.issn.1002-106X.2019.07.001
    [4] SOLSVIK J, SANCHEZ R A, CHAO Z X, JAKOBSEN H A. Simulations of steam methane reforming/sorption-enhanced steam methane reforming bubbling fluidized bed reactors by a dynamic one-dimensional two-fluid model: Implementation issues and model validation[J]. Ind Eng Chem,2013,52(11):4202−4220. doi: 10.1021/ie303348r
    [5] 李婷玉. 吸附强化甲烷水蒸气重整中CaO基吸附剂的改性研究[D]. 太原: 太原理工大学, 2016.

    LI Ting-yu. The modification of CaO-based Sorbents used for sorption enhanced methane steam reforming[D]. Taiyuan: Taiyuan University of Technology, 2016.
    [6] 王云珠, 泮子恒, 赵燚, 罗永明, 高晓亚. 吸附强化蒸汽重整制氢中CO2固体吸附剂的研究进展[J]. 化工进展,2019,38(11):5103−5113.

    WANG Yun-zhu, PAN Zi-heng, ZHAO Yi, LUO Yong-ming, GAO Xiao-ya. Research progress in CO2 solid sorbents for hydrogen production by sorption-enhanced steam reforming: A review[J]. Chem Ind Eng Prog,2019,38(11):5103−5113.
    [7] FOO H C Y, TAN I S, MOHAMED A R, LEE K T. Insights and utility of cycling-induced thermal deformation of calcium-based microporous material as post-combustion CO2 sorbents[J]. Fuel,2020,260:116354. doi: 10.1016/j.fuel.2019.116354
    [8] 荆洁颖,王世东,张学伟,李清,李文英. Ca/Al物质的量比对Ni/CaO-Al2O3结构及其催化重整性能的影响[J]. 燃料化学学报,2017,45(8):956−962. doi: 10.1016/S1872-5813(17)30046-4

    JING Jie-ying, WANG Shi-dong, ZHANG Xue-wei, LI Qing, LI Wen-ying. Influence of Ca/Al molar ratio on structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst[J]. J Fuel Chem Technol,2017,45(8):956−962. doi: 10.1016/S1872-5813(17)30046-4
    [9] 荆洁颖,张子毅,王世东,李文英. 焙烧温度对Ni/CaO-Al2O3结构及其催化重整性能的影响[J]. 燃料化学学报,2018,46(6):673−679. doi: 10.1016/S1872-5813(18)30030-6

    JING Jie-ying, ZHANG Zi-yi, WANG Shi-dong, LI Wen-ying. Influence of calcination temperature on the structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst[J]. J Fuel Chem Technol,2018,46(6):673−679. doi: 10.1016/S1872-5813(18)30030-6
    [10] 蔡雨露, 田静卓, 张晓雪, 史浩锋, 赵彬然. 镍基核壳结构催化剂的制备及其在甲烷二氧化碳催化重整中的应用[J]. 天然气化工(C1化学与化工),2020,45(1):103−107.

    CAI Yu-lu, TIAN Jing-zhuo, ZHANG Xiao-xue, SHI Hao-feng, ZHAO Bin-ran. Preparation of nickel-based core-shell catalysts and their application in carbon dioxide reforming of methane[J]. Nat Gas Chem Ind,2020,45(1):103−107.
    [11] CHEN X L, YANG L, ZHOU Z M, CHENG Z M. Core-shell structured CaO-Ca9Al6O18@ Ca5Al6O14/Ni bifunctional material for sorption-enhanced steam methane reforming[J]. Chem Eng Sci,2017,163:114−122. doi: 10.1016/j.ces.2017.01.036
    [12] XU J Y, WU S F. Stability of complex catalyst with NiO@TiO2 core-shell structure for hydrogen production[J]. Int J Hydrog Energy,2018,43(22):10294−10300. doi: 10.1016/j.ijhydene.2018.04.095
    [13] JING J Y, LI T Y, ZHANG X W, WANG S D, TURMEL W A, LI W Y. Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism[J]. Appl Energy,2017,199:225−233. doi: 10.1016/j.apenergy.2017.03.131
    [14] PRIETO G, TÜYSÜZ H, DUYCKAERTS N, KNOSSALLA J, GUANG-HUI WANG, SCHÜTH F. Hollow Nano- and Microstructures as Catalysts[J]. Chem Rev,2016,116(22):14056−14119. doi: 10.1021/acs.chemrev.6b00374
    [15] WONG Y J, ZHU L, TEO W S, TAN Y W, YANG Y, WANG C, CHEN H. Revisiting the stober method: Inhomogeneity in silica shells[J]. J Am Chem Soc,2011,133(30):11422−11425. doi: 10.1021/ja203316q
    [16] LI W, TIAN Y, ZHAO C H, ZHANG B L, ZHANG H P, ZHANG Q Y, GENG W C. Investigation of selective etching mechanism and its dependency on the particle size in preparation of hollow silica spheres[J]. J Nanopart Res,2015,17(12):1−11.
    [17] TAN L F, LIU T L, LI L L, LIU H Y, WU X L, GAO F P, HE X L, MENG X W, CHEN D, TANG F Q. Uniform double-shelled silica hollow spheres: acid/base selective-etching synthesis and their drug delivery application[J]. RSC Adv,2013,3(16):5649−5655. doi: 10.1039/c3ra40733k
    [18] FANG X L, CHEN C, LIU Z H, LIU P X, ZHENG N F. A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres[J]. Nanoscale,2011,3(4):1632−1639. doi: 10.1039/c0nr00893a
    [19] JING J Y, ZHANG X W, LI Q, LI T Y, LI W Y. Self-activation of CaO/Ca3Al2O6 sorbents by thermally pretreated in CO2 atmosphere[J]. Appl Energy,2018,220:419−225. doi: 10.1016/j.apenergy.2018.03.069
    [20] KIM S M, ABDALA P M, HOSSEINI D, ARMUTLULU A, MARGOSSIAN T, COPéRET C, MüLLER C. Ru/Ca3Al2O6-CaO catalyst-CO2 sorbent for the production of high purity hydrogen via sorption-enhanced steam methane reforming[J]. Catal Sci Technol,2019,9(20):5745−5756. doi: 10.1039/C9CY01095E
    [21] PECHARAUMPORN P, WONGSAKULPHASATCH S, GLINRUN T, MANEEDAENG A, HASSAN Z, ASSABUMRUNGRAT S. Synthetic CaO-based sorbent for high-temperature CO2 capture in sorption-enhanced hydrogen production[J]. Int J Hydrog Energy,2019,44(37):20663−20677. doi: 10.1016/j.ijhydene.2018.06.153
    [22] VANGA G, GATTIAA D M, STENDARDO S, SCACCIAA S. Novel synthesis of combined CaO-Ca12Al14O33-Ni sorbent-catalyst material for sorption enhanced steam reforming processes[J]. Ceram Int,2019,45(6):7594−7605. doi: 10.1016/j.ceramint.2019.01.054
    [23] ANTZARAS A N, HERACLEOUS E, LEMONIDOU A A. Hybrid catalytic materials with CO2 capture and oxygen transfer functionalities for high–purity H2 production[J]. Catal Today,2021,369:2−11. doi: 10.1016/j.cattod.2020.06.018
    [24] GIULIANO A D, GALLUCCI K, FOSCOLO P U, COURSON C. Effect of Ni precursor salts on Ni-mayenite catalysts for steam methane reforming and on Ni-CaO mayenite materials for sorption enhanced steam methane reforming[J]. Int J Hydrog Energy,2019,44(13):6461−6480. doi: 10.1016/j.ijhydene.2019.01.131
    [25] GHUNGRUD S A, DEWOOLKAR K D, VAIDYA P D. Cerium-promoted bi-functional hybrid materials made of Ni, Co and hydrotalcite for sorption enhanced steam methane reforming (SESMR)[J]. Int J Hydrog Energy,2019,44(2):694−706. doi: 10.1016/j.ijhydene.2018.11.002
    [26] HAFIZI A, RAHIMPOUR M R, HERAVI M. Experimental investigation of improved calcium based CO2 sorbent and Co3O4/SiO2 oxygen carrier for clean production of hydrogen in sorption enhanced chemical looping reforming[J]. Int J Hydrog Energy,2019,44(33):17863−17877. doi: 10.1016/j.ijhydene.2019.05.030
    [27] CHEN C H, YU C T, CHEN W H, KUO H T. Effect of in-situ carbon dioxide sorption on methane reforming by nickel-calcium composite catalyst for hydrogen production[J]. Earth Environ Sci,2020,463(1):012102.
    [28] MICHELI F, SCIARRA M, COURSONA C, GALLUCCI K. Catalytic steam methane reforming enhanced by CO2 capture on CaO based bi-functional compounds[J]. J Energy Chem,2017,26(5):1014−1025. doi: 10.1016/j.jechem.2017.09.001
    [29] HU J W, HONGMANOROM P, V. GALVITA V, LI Z, KAWI S. Bifunctional Ni-Ca based material for integrated CO2 capture and conversion via calcium-looping dry reforming[J]. Appl Catal B: Environ,2021,284:119734. doi: 10.1016/j.apcatb.2020.119734
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  232
  • HTML全文浏览量:  106
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-02
  • 修回日期:  2022-06-27
  • 录用日期:  2022-07-04
  • 网络出版日期:  2022-07-11
  • 刊出日期:  2022-12-28

目录

    /

    返回文章
    返回