留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2甲烷化反应路径的研究进展

付豪 廉红蕾

付豪, 廉红蕾. CO2甲烷化反应路径的研究进展[J]. 燃料化学学报(中英文), 2023, 51(4): 428-443. doi: 10.19906/j.cnki.JFCT.2022063
引用本文: 付豪, 廉红蕾. CO2甲烷化反应路径的研究进展[J]. 燃料化学学报(中英文), 2023, 51(4): 428-443. doi: 10.19906/j.cnki.JFCT.2022063
FU Hao, LIAN Hong-lei. Research progress on the reaction pathway of CO2 methanation[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 428-443. doi: 10.19906/j.cnki.JFCT.2022063
Citation: FU Hao, LIAN Hong-lei. Research progress on the reaction pathway of CO2 methanation[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 428-443. doi: 10.19906/j.cnki.JFCT.2022063

CO2甲烷化反应路径的研究进展

doi: 10.19906/j.cnki.JFCT.2022063
基金项目: 煤基生态精细化工河南省工程实验室开放课题(C202003)资助
详细信息
    作者简介:

    付豪(1997−),男,硕士研究生。E-mail:fuhao0416@163.com

    通讯作者:

    Tel: 13663002080,E-mail: hongleilian@zzu.edu.cn

  • 中图分类号: O643.3

Research progress on the reaction pathway of CO2 methanation

Funds: The project was supported by Opening Foundation of Henan Provincial Engineering Laboratory of Coal-based Ecological Fine Chemicals (C202003)
  • 摘要:

    CO2甲烷化反应是一个复杂的多相催化过程,在反应过程中会产生各种各样的中间体,其反应路径目前还存在许多争议和矛盾。深入系统地研究CO2甲烷化反应中催化剂表面中间体的演变过程,可以进一步从机理的角度优化催化剂的设计方案,提高催化性能。本工作主要基于原位红外光谱表征技术,总结梳理了最近关于CO2甲烷化反应路径研究的相关工作,着重探讨了负载型催化剂的活性金属、载体、助剂、合成方法等因素对CO2甲烷化反应路径的影响以及由此对催化剂性能所产生的积极效果。同时针对现阶段所面临的争论点,即反应气CO2与H2的活化位点、催化剂的活性位点以及未来可行的研究方法进行了详细论述。

  • FIG. 2203.  FIG. 2203.

    FIG. 2203.  FIG. 2203.

    图  1  CO2甲烷化反应过程中的各种中间体

    Figure  1  Various intermediates during the CO2 methanation reaction

    图  2  催化剂Rh(1%)/γ-Al2O3上CO2吸附的原位红外光谱谱图[13]

    Figure  2  DRIFTS results after adsorption of CO2 on Rh(1%)/γ-Al2O3 at 125 ℃ and atmospheric pressure, after 30 s, 15 min and 30 min [13](with permission from Elsevier Publications)

    图  3  金属K、Ni改性的催化剂Rh/Al2O3表面CO2加氢反应物种与反应机理[18]

    Figure  3  Identified species and proposed mechanism for CO2 hydrogenation over K and Ni modified Rh/Al2O3 catalyst[18](with permission from ACS Publications)

    图  4  红外吸收光谱法表征催化剂的常用模式[19]

    Figure  4  Common setups used for the characterization of catalytic samples using infrared absorption spectroscopy[19](with permission from ESC Publications)

    图  5  不同Ni负载量Ni-Al催化剂的CO2-TPD谱图[29]

    Figure  5  CO2-TPD plot of Ni-Al catalysts with different Ni loading amounts[29](with permission from Elsevier Publications)

    图  6  Rh/ZrO2催化剂上CO2甲烷化路径示意图[24]

    Figure  6  Schematic representation of the proposed routes for CO2 methanation catalyzed by ZrO2-supported Rh[24](with permission from Elsevier Publications)

    图  7  在CO2与H2混合气体下升温处理时(a)Ni/ZrO2和(b)纯载体ZrO2的红外光谱谱图 [12]

    Figure  7  FT-IR spectra characterizing (a) the ZrO2-supported Ni sample and (b) the bare support as they were treated in a flowing mixture of CO2 and H2 at increasing temperature[12](with permission from Elsevier Publications)

    图  8  (a)流动反应器/DRIFT池流出气体质谱中CH4和H2O质量碎片信号强度和甲酸盐(1570−1590 cm−1)、甲氧基(1160 cm−1)的红外吸收峰强度变化曲线,甲酸(a1)和甲醇(a2)加氢过程红外采样;(b)甲酸(b1)和甲醇(b2)加氢过程中催化剂Ni/ZrO2的红外谱图[12]

    Figure  8  (a) Correlation between the signal intensities of the mass fragments of CH4 and H2O in mass spectra of the effluent gases from the flow reactor/DRIFT cell,Infrared absorption peak intensity change curve of formate (1570−1590 cm−1), methoxy (1160 cm−1), infrared sampling during formic acid hydrogenation process (a1), and methanol hydrogenation process (a2), (b) Infrared spectra of catalyst Ni/ZrO2 during hydrogenation of formic acid (b1) and hydrogenation of methanol (b2)12](with permission from Elsevier Publications)

    图  9  513 K下原料气CO2 + H2与CO2交替切换时催化剂5%Pd/Al2O3上随时间变化的(a)红外谱图,(b)在DRIFT池出口处收集的相应质谱信号曲线图(左)513 K下,原料气CO2 + H2与CO2交替切换时还原的催化剂0.5%Pd/Al2O3上随时间变化的(a)红外谱图(b)在DRIFT池出口处收集的相应质谱信号曲线图(右)[54]

    Figure  9  (a) DRIFT spectra and (b) the corresponding MS signals collected at the exit of the DRIFT cell as a function of time when the feed gas was switched alternately between CO2 + H2 and CO2 over 5% Pd/Al2O3 at 513 K (left) (a) DRIFT spectra and (b) the corresponding MS signals at the exit of the DRIFT cell collected at 513 K as a function of time when the feed gas was switched alternately between CO2 + H2 and CO2 over a reduced 0.5% Pd/Al2O3 sample[54](with permission from ACS Publications)

    图  10  CH4和CO的形成机理示意图[44]

    Figure  10  CH4 and CO formation mechanism[44](with permission from Elsevier Publications)

    图  11  催化剂Ni/ZrO2-P(a)与Ni/ZrO2-C(b)在2.5%H2,0.5%CO2和Ar作为载体组成的混合气体(40 mL/min)下进行程序升温反应时的原位红外光谱谱图[69]

    双齿碳酸氢盐(♣), 单齿碳酸盐(♦), 双齿甲酸盐( + )、单齿甲酸盐(*)、线性CO或桥连CO (△) 以及气态CH4 (●)

    Figure  11  Operando DRIFT spectra during temperature-programmed reaction of a gas mixture (40 mL/min) containing 2.5% H2, 0.5% CO2 with Ar as carrier gas over Ni/ZrO2-P (a) and Ni/ZrO2-C (b)69]

    bidentate bicarbonate (♣), monodentate carbonates (♦), bidentate formate ( + ), monodentate formate (*), linear CO or bridge CO (△) and gaseous CH4 (●) (with permission from Elsevier Publications)

    图  12  中间体碳酸盐的生成路径示意图

    Figure  12  Formation path of intermediate carbonate

    (Ⅰ: bicarbonate dissociation to form carbonate; Ⅱ: CO2 adsorption directly generates carbonates)

    图  13  氢气的活化解离

    Figure  13  Activation and dissolution of hydrogen

    图  14  M/MSN上CO2甲烷化的反应机制[15]

    Figure  14  Reaction path mechanism of CO2 methanation on M/MSN[15](with permission from Elsevier Publications)

  • [1] SABATIER P, SENDERENS J B. Hydrogénation directe des oxydes du carbone en présence de divers métaux divisés[J]. C R Acad Sci,1902,134:514−516.
    [2] BAILERA M, LISBONA P, ROMEO L M, ESPATOLERO S. Power to Gas projectsreview: Lab, pilot and demo plants for storing renewable energy and CO2[J]. Renewable Sustainable Energy Rev,2017,69:292−312.
    [3] SHEN L, XU J, ZHU M, HAN Y. Essential role of the support for nickel-based CO2 methanation catalysts[J]. ACS Catal,2010,10:14581−14591.
    [4] WOO J, LI C, HERMAWAN P, JIHO Y, JIM P, YANG Y, SENGLIM. Recent trend in thermal catalytic low temperature CO2 methanation: A critical review[J]. Catal Today,2021,368:2−19.
    [5] SU X, XU J, LIANG B, DUAN H, HOU B, HUANG Y. Catalytic carbon dioxide hydrogenation to methane: A review of recent studies[J]. J Energy Chem,2016,25:553−565.
    [6] ALFREDO S, JUAN C F. Mechanistic Insights into the CO2 methanation catalyzed by supported metals: A Review[J]. J Nanosci Nanotechnol,2019,19:3110−3123.
    [7] GUO Y, MEI S, YUAN K, WANG D, LIU H, YAN C, ZHANG Y. Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and h-spillover effect[J]. ACS Catal,2018,8:6203−6215.
    [8] ZHOU G, LIU H, CUI K, JIA A, HU G, JIAO Z, LIU Y, ZHANG X. Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation[J]. Appl Surf Sci,2016,383:248−252.
    [9] KUSAMA H, BANDO K K, OKABE K, ARAKAWA H. CO2 hydrogenation reactivity and structure of Rh/SiO2 catalysts prepared from acetate, chloride and nitrate precursors[J]. Appl Catal A: Gen,2001,205:285−294.
    [10] ASHOK J, LANG M, KAWI S. Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: Influence of preparation methods[J]. Catal Today,2017,281:304−311. doi: 10.1016/j.cattod.2016.07.020
    [11] NAVARRO J S, SZEGO A, BOBADILLA L F, LAGUNA O H, SARRIA F R, CENTENO M A, ODRIOZOLA J A. Operando spectroscopic evidence of the induced effect of residual species in the reaction intermediates during CO2 hydrogenation over ruthenium nanoparticles[J]. ChemCatChem,2019,11:2063−2068.
    [12] ALFREDO S, JOSE F L, ARMANDO A C, JUANC F G. Participation of surface bicarbonate, formate and methoxy species in the carbon dioxide methanation catalyzed by ZrO2-supported Ni[J]. Appl Catal B: Environ,2017,218:611−620. doi: 10.1016/j.apcatb.2017.06.063
    [13] ANTOINE B, COLAS S, MARC J, GEORGE H, ALEJANDRO K, PATRICIO R. Methanation of CO2: Further insight into the mechanism over Rh/γ-Al2O3 catalyst[J]. Appl Catal B: Environ,2012,113−114:2−10.
    [14] LIZANDRA M N C A, MAYRA P A, MARTIN A, CALEB D W, GARY J, RAIMUNDO C R N. CO2 methanation over metal catalysts supported on ZrO2: Effect of the nature of the metallic phase on catalytic performance[J]. Chem Eng Sci,2021,239:116604. doi: 10.1016/j.ces.2021.116604
    [15] AZIZ M A A, JALIL A A, TRIWAHYONO S, SIDIK S M. Methanation of carbon dioxide on metal-promoted mesostructured silica nanoparticles[J]. Appl Catal A: Gen,2014,486:115−122. doi: 10.1016/j.apcata.2014.08.022
    [16] PEEBLES D E, GOODMAN D W., WHITE J M. Methanation of carbon dioxide on Ni(100) and the effects of surface modifiers[J]. J Phys Chem C,1983,87:4378−4387. doi: 10.1021/j100245a014
    [17] MICHEL M, RALF D, MICHAEL P, ALBERT R. Transient drift spectroscopy for the determination of the surface reaction kinetics of CO2 methanation[J]. Chem Eng Sci,1994,49:4801−4809. doi: 10.1016/S0009-2509(05)80060-0
    [18] DENISE H, RODEMERCK U, URSULA B. Mechanistic study of low temperature CO2 hydrogenation over modified Rh/Al2O3 catalysts[J]. ACS Catal,2016,8:6275−6284.
    [19] ZAERA F. Infrared absorption spectroscopy of adsorbed CO: New applications in nanocatalysis for an old approach[J]. ChemCatChem,2012,4:1525−1533.
    [20] FENG K, WANG Y, GUO M, ZHANG J, LI Z, DENG T, ZHANG Z, YAN B. In-situ/operando techniques to identify active sites for thermochemical conversion of CO2 over heterogeneous catalysts[J]. J Energy Chem,2021,62:153−171. doi: 10.1016/j.jechem.2021.03.054
    [21] ALFREDO S, TRINO A, JUAN C. F G. Spectroscopic evidence of surface species during CO2 methanation catalyzed by supported metals: A review[J]. Catal Today,2022,394−396,2-12.
    [22] GAGGIOLI C A, STONEBURNER S J, CRAMER C J, GAGLIARDI L. Beyond density functional theory: the multiconfigurational approach to model heterogeneous catalysis[J]. ACS Catal,2019,9:8481−8502. doi: 10.1021/acscatal.9b01775
    [23] NAZMUL H M D, RATTANAWALEE R, GAO M, JIN O, HASEGAWA J Y, KIYOTAKA A, ATSUSHI F, ABHIJIT S. Co single atoms in ZrO2 with inherent oxygen vacancies for selective hydrogenation of CO2 to CO[J]. ACS Catal,2021,11:9450−9461. doi: 10.1021/acscatal.1c02041
    [24] ALFREDO S G, TRINO A Z, JUAN C F. Spectroscopic evidence of the simultaneous participation of rhodium carbonyls and surface formate species during the CO2 methanation catalyzed by ZrO2-supported Rh[J]. Appl Catal B: Environ,2022,304:120955. doi: 10.1016/j.apcatb.2021.120955
    [25] YE R, LI Q, GONG W, WANG T, JOSHUAJAMES RAZINK, LIN L, QIN Y, QIN Y. High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation[J]. Appl Catal B: Environ,2020,268:118474. doi: 10.1016/j.apcatb.2019.118474
    [26] HE F, ZHUANG J, LU B, LIU X, ZHANG J, SU F. Ni-based catalysts derived from Ni-Zr-Al ternary hydrotalcites show outstanding catalytic properties for low-temperature CO2 methanation[J]. Appl Catal B: Environ,2021,293:120218. doi: 10.1016/j.apcatb.2021.120218
    [27] DICOSIMO J I, DÍEZ V K, M XU, IGLESIA E, APESTEGUÍA C R. Structure and surface and catalytic properties of Mg-Al basic oxides[J]. J Catal,1998,178:499−510. doi: 10.1006/jcat.1998.2161
    [28] COLEMAN L J I, EPLING W, HUDGINS R R, CROISE E. Ni/Mg-Al mixed oxide catalyst for the steam reforming of ethanol[J]. Appl Catal A: Gen,2009,363:52−63. doi: 10.1016/j.apcata.2009.04.032
    [29] STEFAN E, OLAF H. On the interaction of CO2 with Ni-Al catalysts[J]. Appl Catal A: Gen, 580,2019,71−80.
    [30] JONAS B, JAN H J, VICKI H G. FTIR spectroscopy combined with isotope labeling and quantum chemical calculations to investigate adsorbed bicarbonate formation following reaction of carbon dioxide with surface hydroxyl groups on Fe2O3 and Al2O3[J]. J Phys Chem B,2006,110:12005−12016.
    [31] GUO M, LU G. The regulating effects of cobalt addition on the catalytic properties of silica-supported Ni-Co bimetallic catalysts for CO2 methanation[J]. React Kinet Mech Catal,2014,113:101−113. doi: 10.1007/s11144-014-0732-0
    [32] ZHEN W, LI B, LU G, MA J. Enhancing catalytic activity and stability for CO2 methanation on Ni-Ru/γ-Al2O3 via modulating impregnation sequence and controlling surface active species[J]. RSC Adv,2014,4:16472−16479. doi: 10.1039/C3RA47982J
    [33] LEA R W, ELAINE GOMEZ, YAN B, YAO S, CHEN J. Tuning Ni-catalyzed CO2 hydrogenation selectivity via Ni-ceria support interactions and Ni-Fe bimetallic formation[J]. Appl Catal B: Environ,2018,224:442−450. doi: 10.1016/j.apcatb.2017.10.036
    [34] REN J, QIN X, YANG J, QIN Z, GUO H, LIN J, LI Z. Methanation of carbon dioxide over Ni-M/ZrO2 (M = Fe, Co, Cu) catalysts: Effect of addition of a second metal[J]. Fuel Process Technol,2015,137:204−211. doi: 10.1016/j.fuproc.2015.04.022
    [35] MARC A S, ABHIJEET G, JELENA J, SEBASTIAN W, CHARLOTTE F, ADAM H C, ERISA S, FELIX S J G. Structural dynamics in Ni-Fe catalysts during CO2 methanation-role of iron oxide clusters[J]. Catal Sci Technol,2020,10:7542−7554. doi: 10.1039/D0CY01396J
    [36] KONSTANTIN P, KYEONG T J, ALEXIS T B. Investigation of CO and CO2 adsorption on tetragonal and monoclinic zirconia[J]. Langmuir,2001,17:4297−4303. doi: 10.1021/la001723z
    [37] SHYAM K, PING L, JINGGUANG G C. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. [J] JACS, 2017, 139, 9739−9754.
    [38] JOCHENA H D, LI P, ZHANG L, GEINKH A, ZHANG R, PATRICKH L S, WEY Y. Highly active Ni/Y-doped ZrO2 catalysts for CO2 methanation[J]. Appl Surf Sci,2016,388:653−663. doi: 10.1016/j.apsusc.2015.11.187
    [39] GUILLÉN H, GIMÉNEZ M, MARTÍNEZ M, LÓPEZ A B, GARCÍA A. Study of Ce/Pr ratio in ceria-praseodymia catalysts for soot combustion under different atmospheres[J]. Appl Catal A: Gen,2020,590:117339−117356. doi: 10.1016/j.apcata.2019.117339
    [40] KRISHNA K, BUENO L A, MAKKEE M, MOULIJN J A. Potential rare earth modified CeO2 catalysts for soot oxidation: I. Characterisation and catalytic activity with O2[J]. Appl Catal B: Environ,2007,75:189−200. doi: 10.1016/j.apcatb.2007.04.010
    [41] SERGIO L R, ARANTXA D, JERÓNIMO J, ESTHER B G, DOLORES L C, AGUSTÍN B L. Effect of Pr in CO2 methanation Ru/CeO2 catalysts[J]. J Phys Chem C,2021,125:12038−12049. doi: 10.1021/acs.jpcc.1c03539
    [42] MUHAMMAD Y, LEONG L K, MOHAMMED J K B, HUMAYUN N, AREEB S. Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2[J]. Fuel,2016,30:8815−8831. doi: 10.1021/acs.energyfuels.6b01723
    [43] YU Y, BIAN Z, SONG Y, WANG J, ZHONG Q, SIBUDJING K. Influence of calcination temperature on activity and selectivity of Ni–CeO2 and Ni–Ce0.8Zr0.2O2 catalysts for CO2 methanation[J]. Top Catal,2018,61:1514−1527. doi: 10.1007/s11244-018-1010-6
    [44] XU Y, CHEN Y, LI L, ZHOU J, SONG M, ZHANG X, YIN Y. Improved low-temperature activity of Ni-Ce/γ-Al2O3 catalyst with layer structural precursor prepared by cold plasma for CO2 methanation[J]. Int J Hydrog Energy,2017,42:13085−13091. doi: 10.1016/j.ijhydene.2017.04.019
    [45] LIA W, NIEA X, JIAN X, ZHANG A, DING A, LIU M, LIU Z, GUO Z, SONG C. ZrO2 support imparts superior activity and stability of Co catalysts for CO2 methanation[J]. Appl Catal B: Environ,2018,220:397−408. doi: 10.1016/j.apcatb.2017.08.048
    [46] RUI N, ZHANG X, ZHANG F, LIU Z, CAO X, XIE Z, ZOU R, SANJAYA D S, YANG Y, JOS ́E A R, LIU C J. Highly active Ni/CeO2 catalyst for CO2 methanation: Preparation and characterization[J]. Appl Catal B: Environ,2021,282:119581. doi: 10.1016/j.apcatb.2020.119581
    [47] BENJAMIN M, HUDSON W P, STEFAN M, WOLFGANG K. Methanation of CO2: Structural response of a Ni-based catalyst under fluctuating reaction conditions unraveled by operando spectroscopy[J]. J Catal,2015,327:48−53. doi: 10.1016/j.jcat.2015.04.006
    [48] XU X, TONG Y, HUANG J, ZHU J, FANG X, XU J, WANG X. Insights into CO2 methanation mechanism on cubic ZrO2 supported Ni catalyst via a combination of experiments and DFT calculations[J] Fuel, 2021, 283, 118867.
    [49] Peri J B. A Model for the Surface of γ-Alumina1[J]. J Phys Chem C,1964,69:220−230.
    [50] AGHAYAN M, POTEMKIN D I, RUBIO M F, USKOV S I, SNYTNIKOV P V, HUSSAINOVA I. Template-assisted wet-combustion synthesis offibrous nickel-based catalyst for carbon dioxide methanation and methane steam reforming[J]. ACS Appl Mater Interfaces,2017,9:43553−43562. doi: 10.1021/acsami.7b08129
    [51] GAO J, LIU Q, GU F, LIU B, ZHONG Z, SU F. Recent advances in methanation catalysts for the production of synthetic natural gas[J]. RSC Adv,2015,5:22759. doi: 10.1039/C4RA16114A
    [52] ADRIÁN Q, UNAIDE L T, BEÑATPEREDA A, JOSÉ A M, JUAN R G. Ni catalysts with La as promoter supported over Y- and BETA- zeolites for CO2 methanation[J]. Appl Catal B: Environ,2018,238:393−403. doi: 10.1016/j.apcatb.2018.07.034
    [53] ZHAN Y, WANG Y, GU D, CHEN C, JIANG L, KATSUOMI T. Ni/Al2O3-ZrO2 catalyst for CO2 methanation: The role of γ-(Al, Zr)2O3 formation[J]. Appl Surf Sci,2018,459:74−79. doi: 10.1016/j.apsusc.2018.07.206
    [54] WANG X, SHI H, JA H K, JÁNOS S. Mechanism of CO2 hydrogenation on Pd/Al2O3 catalysts: Kinetics and transient drifts-ms studies[J]. ACS Catal,2015,5:6337−6349. doi: 10.1021/acscatal.5b01464
    [55] HAO Z, SHEN J, LIN S, HAN X, CHANG X, LIUB J, LI M, MA X. Decoupling the effect of Ni particle size and surface oxygen deficiencies in CO2 methanation over ceria supported Ni[J]. Appl Catal B: Environ,2021,286:119922. doi: 10.1016/j.apcatb.2021.119922
    [56] WANG C, GUAN E, WANG L, CHU X, WU Z, ZHANG J, YANG Z, JIANG Y, ZHANG L, MENG X, BRUCE C G, XIAO F. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation[J]. JACS,2019,141:8482−8488. doi: 10.1021/jacs.9b01555
    [57] ALEJANDRO K, PATRICIO R. Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts[J]. J Catal,2013,301:141−153. doi: 10.1016/j.jcat.2013.02.009
    [58] PARASKEVI P, DIMITRIS I K, XENOPHON E V. Mechanistic aspects of the selective methanation of CO over Ru/TiO2 catalyst[J]. Catal Today,2012,181:138−147. doi: 10.1016/j.cattod.2011.05.030
    [59] XIANG WANG, HUI SHI, JA HUN KWAK, JÁNOS SZANYI. Mechanism of CO2 Hydrogenation on Pd/Al2O3 Catalysts: Kinetics and Transient DRIFTS-MS Studies[J]. ACS Cata,2015,5:6337−6349.
    [60] YAN X, HU Y, LIU P, SHA LI, ZHAO B, ZHANG Q, JIAO W, CHEN S, WANG P, LU J, FAN J, DENG X, PAN Y. Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: Effect of interfacial structure of Ni/CeO2 on SiO2[J]. Appl Catal B: Environ,2019,246:221−231. doi: 10.1016/j.apcatb.2019.01.070
    [61] KIKKAWA S, TERAMURA K, ASAKURA H, HOSOKAWA H S, TANAKA T. Isolated platinum atoms in Ni/γ-Al2O3 for selective hydrogenation of CO2 toward CH4[J]. J Phys Chem C,2019,123:23446−23454. doi: 10.1021/acs.jpcc.9b03432
    [62] WANG F, HE S, CHEN H, WANG B, ZHENG L, WEI M, DAVID G EVANS, DUAN X. Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation[J]. JACS,2016,138:6298−6305. doi: 10.1021/jacs.6b02762
    [63] PAN Q, PENG J, SUN T, WANG S, WANG S. Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites[J]. Cata Com,2014,45:74−78. doi: 10.1016/j.catcom.2013.10.034
    [64] MICHIAKI YAMASAKI, HIROKI HABAZAKI, TAKESHI YOSHIDA, EIJI AKIYAMA, EIJI AKIYAMA, KATSUHIKO ASAMI. Compositional dependence of the CO2 methanation activity of Ni/ZrO2 catalysts prepared from amorphous Ni-Zr alloy precursors[J]. Appl Catal A: Gen,1997,163(1/2):187−197. doi: 10.1016/S0926-860X(97)00142-7
    [65] ZHOU R, RUI N, FAN Z. Effect of the structure of Ni/TiO2 catalyst on CO2 methanation[J]. Int J Hydrog Energy,2016,41:22017−22025. doi: 10.1016/j.ijhydene.2016.08.093
    [66] YAN X, LIU Y, ZHAO B, WANG Y, LIU C. Enhanced sulfur resistance of Ni/SiO2 catalyst for methanation via the plasma decomposition of nickel precursor[J]. Int J Hydrog Energy,2013,38:2283−2291. doi: 10.1016/j.ijhydene.2012.12.024
    [67] GUO X, SUN Y, YU Y, ZHU X, LIU C. Carbon formation and steam reforming of methane on silica supported nickel catalysts[J]. Catal Commun,2012,19:61−65. doi: 10.1016/j.catcom.2011.12.031
    [68] PENG H, MA Y, LIU W, XU X, FANG X, LIAN J, WANG X, LI C, ZHOU W, YUAN P. Methane dry reforming on Ni/La2Zr2O7 treated by plasma in different atmospheres[J]. J Energy Chem,2015,24:416−424. doi: 10.1016/j.jechem.2015.06.015
    [69] JIA X, ZHANG X, RUI N, HU X, LIU C. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity[J]. Appl Catal B: Environ,2019,244:159−169. doi: 10.1016/j.apcatb.2018.11.024
    [70] SREEDHAR I, VARUN Y, SATYAPAUL A S, VENUGOPAL A. Developmental trends in CO2 methanation using various catalysts[J]. Catal Sci Technol,2019,9:4478. doi: 10.1039/C9CY01234F
    [71] YU Y, CHAN Y, BIAN Z, SONG F, WANG J, ZHONG Q, SIBUDJING KAWI. Enhanced performance and selectivity of CO2 methanation over g-C3N4 assisted synthesis of Ni-CeO2 catalyst: Kinetics and DRIFTS studies[J]. Int J Hydrog Energy,2018,43:15191−15204. doi: 10.1016/j.ijhydene.2018.06.090
    [72] PAN Q, PENG J, WANG S, WANG S. In situ FTIR spectroscopic study of the CO2 methanation mechanism on Ni/Ce0.5Zr0.5O2[J]. Catal Sci Technol,2014,4:502−509. doi: 10.1039/C3CY00868A
    [73] ALDANA P A U, OCAMPO F, KOBL K, LOUIS B, THIBAULT S F, DATURI M, BAZINA P, THOMAS S, ROGER A C. Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia reaction mechanism by operando IR spectroscopy[J]. Catal Today,2013,215:201−207. doi: 10.1016/j.cattod.2013.02.019
    [74] KARELOVIC, RUIZ A, RUIZ P. CO2 hydrogenation at low temperature over Rh/γ-Al2O3 catalysts: Effect of the metal particle size on catalytic performances and reaction mechanism[J]. Appl Catal B: Environ,2012,22:237−249.
    [75] JUNKO K, HIROSHI A, YOSHIHISA S. Infrared Studies of Adsorbed Species of H2, CO and CO2 over ZrO2[J]. J Chem Soc Faraday T,1988,84:511−519. doi: 10.1039/f19888400511
    [76] TANG M, YUAN W, OU Y, LI G, YOU R, LI S, YANG H, ZHANG Z, WANG Y. Recent progresses on structural reconstruction of nanosized metal catalysts via controlled-atmosphere transmission electron microscopy: A review[J]. ACS Catal,2020,10:14419−14450. doi: 10.1021/acscatal.0c03335
  • 加载中
图(15)
计量
  • 文章访问数:  2907
  • HTML全文浏览量:  411
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-20
  • 修回日期:  2022-07-11
  • 录用日期:  2022-07-18
  • 网络出版日期:  2022-07-28
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回