留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲醇气氛下低阶煤热解气中CO加氢制芳烃机理研究

王月伦 安会会 张雪纯 马云欣 詹贵贵 刘豪杰 曹景沛

王月伦, 安会会, 张雪纯, 马云欣, 詹贵贵, 刘豪杰, 曹景沛. 甲醇气氛下低阶煤热解气中CO加氢制芳烃机理研究[J]. 燃料化学学报(中英文), 2022, 50(12): 1611-1618. doi: 10.19906/j.cnki.JFCT.2022065
引用本文: 王月伦, 安会会, 张雪纯, 马云欣, 詹贵贵, 刘豪杰, 曹景沛. 甲醇气氛下低阶煤热解气中CO加氢制芳烃机理研究[J]. 燃料化学学报(中英文), 2022, 50(12): 1611-1618. doi: 10.19906/j.cnki.JFCT.2022065
WANG Yue-lun, AN Hui-hui, ZHANG Xue-chun, MA Yun-xin, ZHAN Gui-gui, LIU Hao-jie, CAO Jing-pei. Mechanism of hydrogenation of CO to aromatics from coal pyrolysis gas of low rank under methanol atmosphere[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1611-1618. doi: 10.19906/j.cnki.JFCT.2022065
Citation: WANG Yue-lun, AN Hui-hui, ZHANG Xue-chun, MA Yun-xin, ZHAN Gui-gui, LIU Hao-jie, CAO Jing-pei. Mechanism of hydrogenation of CO to aromatics from coal pyrolysis gas of low rank under methanol atmosphere[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1611-1618. doi: 10.19906/j.cnki.JFCT.2022065

甲醇气氛下低阶煤热解气中CO加氢制芳烃机理研究

doi: 10.19906/j.cnki.JFCT.2022065
基金项目: 国家自然科学基金(21975282)资助
详细信息
    通讯作者:

    E-mail: wangyuelun@126.com

    caojingpei@cumt.edu.cn

  • 中图分类号: TQ530.2

Mechanism of hydrogenation of CO to aromatics from coal pyrolysis gas of low rank under methanol atmosphere

Funds: The project was supported by National Natural Science Foundation of China (21975282)
  • 摘要: 由于低阶煤含氧官能团较多,热解过程产生大量CO和CO2,甲醇气氛提供的活性氢可实现CO或CO2催化加氢生成轻质芳烃。本研究采用密度泛函理论探讨了甲醇气氛下低阶煤热解气之一CO于Fe/HZSM-5催化剂上经烯烃中间体制芳烃的机理,结果表明,CO于Fe5C2(510)表面加氢生成低碳烯烃,进而通过多次甲基化和去质子化实现C−C键偶联及链增长,其中,甲基化需活化能较高。 ${\rm{C}}^+_{6} $ 芳构化过程通过氢转移、去质子化及环化生成苯,其氢转移最难。整个CO加氢制芳烃过程以甲基化所需能垒最高,成为该反应的决速步。
  • FIG. 2027.  FIG. 2027.

    FIG. 2027.  FIG. 2027.

    图  1  46T团簇模型示意图

    Figure  1  Schematic diagram of 46T cluster model

    (a): Main view, (b): Back view

    图  2  Fe5C2 (510)模型示意图

    Figure  2  Schematic diagram of Fe5C2 (510) model

    图  3  CO和H吸附构型图

    Figure  3  CO and H adsorption configuration diagram

    图  4  生成中间体C2H4过程中的过渡态

    紫色:Fe,红色:O,白色:H,绿色:表面物种的C,灰色:Fe5C2(510)表面C

    Figure  4  Transition states in the formation of C2H4

    Purple: Fe; red: O; white: H; green: C of surface species; gray: surface C of Fe5C2(510)

    图  5  生成C2H4势能图

    Figure  5  Potential energies of the formation of C2H4

    图  6  生成 ${\rm{C}}^+_6 $ 路径示意图

    Figure  6  Path of the formation of ${\rm{C}}^+_6 $

    图  7  生成C ${}^+_6 $ 路径势能图

    Figure  7  Potential energies of the formation of C ${}^+_6 $

    图  8  C ${}^+_6 $ 芳构化路径示意图

    Figure  8  Process of aromatization for C ${}^+_6 $

    图  9  C ${}^+_6 $ 芳构化势能图

    Figure  9  Potential energies of C ${}^+_6 $ aromatization

    图  10  甲醇脱水过程过渡态

    Figure  10  Transition state of methanol dehydration process

    图  11  C ${}^+_6 $ 芳构化氢转移过渡态

    Figure  11  Transition states of hydrogen transfer for C ${}^+_6 $ aromatization

    表  1  生成C2H4计算结果

    Table  1  Calculation results of forming C2H4 (823 K,101 kPa)

    Reaction ∆H/(kJ·mol−1) ∆G/(kJ·mol−1) k/s−1
    H + CO→H + C + O 76 124 2.31 × 105
    H + C + O→CH + O −50 12 2.81 × 1012
    CH + O + H→CH2 + O 75 82 1.03 × 108
    CH2 + CH2→CH2CH2 10 112 1.38 × 106
    下载: 导出CSV

    表  2  生成C ${}^+_6 $ 计算结果

    Table  2  Calculation results of forming C ${}^+_6 $ (823 K,101 kPa)

    Reaction ∆H/(kJ·mol−1) ∆G/(kJ·mol−1) k/s−1
    M1 30 135 4.37 × 104
    D1 −42 53 7.25 × 109
    M2 34 158 1.50 × 103
    D2 −41 79 1.64 × 108
    M3 51 96 1.35 × 107
    D3 −22 61 2.31 × 109
    M4 39 165 6.16 × 102
    下载: 导出CSV

    表  3  C ${}^+_6 $ 芳构化计算结果

    Table  3  Calculation results of C ${}^+_6 $ aromatization (823 K,101 kPa)

    Reaction ∆H/(kJ·mol−1) ∆G/(kJ·mol−1) k/s−1
    D1 −18 57 4.13 × 109
    H1 60 122 3.10 × 105
    C1 −109 78 1.92 × 108
    D2 −55 48 1.54 × 1010
    H2 −29 107 2.77 × 106
    D3 −11 31 1.85 × 1011
    H3 −27 94 1.85 × 107
    D4 −81 15 1.91 × 1012
    下载: 导出CSV
  • [1] 赵君强. 煤化工绿色发展研究[J]. 煤炭与化工,2020,43(7):126−127. doi: 10.19286/j.cnki.cci.2020.07.036

    ZHAO Jun-qiang. Research on green development of coal chemical industry[J]. Coal Chem Ind,2020,43(7):126−127. doi: 10.19286/j.cnki.cci.2020.07.036
    [2] 林涛海. 中国煤化工工业发展现况及发展趋向[J]. 化工管理,2021,(19):63−64. doi: 10.19900/j.cnki.ISSN1008-4800.2021.19.028

    LIN Tao-hai. The present situation and future development trend of coal chemical industry in China[J]. Chem Enterpr Manage,2021,(19):63−64. doi: 10.19900/j.cnki.ISSN1008-4800.2021.19.028
    [3] YAN L J, LIU Y J, LV P, WANG M J, LI F, BAO W R. Effect of Brønsted acid of Y zeolite on light arene formation during catalytic upgrading of coal pyrolysis gaseous tar[J]. J Energy Inst,2020,93(6):2247−2254. doi: 10.1016/j.joei.2020.06.007
    [4] REN X Y, FENG X B, CAO J P, TANG W, WANG Z H, YANG Z, ZHAO J P, ZHANG L Y, WANG Y J, ZHAO X Y. Catalytic conversion of coal and biomass volatiles: A review[J]. Energy Fuels,2020,34(9):10307−10363. doi: 10.1021/acs.energyfuels.0c01432
    [5] HE L, HUI H L, LI S G, LIN W G. Production of light aromatic hydrocarbons by catalytic cracking of coal pyrolysis vapors over natural iron ores[J]. Fuel,2018,216:227−232.
    [6] LIU Y J, YAN L J, BAI Y H, LI F. Catalytic upgrading of volatile from coal pyrolysis over faujasite zeolites[J]. J Anal Appl Pyrolysis,2018,132:184−189. doi: 10.1016/j.jaap.2018.03.001
    [7] LI Y, AMIN M N, LU X M, LI C S, REN F Q, ZHANG S J. Pyrolysis and catalytic upgrading of low-rank coal using a NiO/MgO-Al2O3 catalyst[J]. Chem Eng Sci,2016,155:194−200. doi: 10.1016/j.ces.2016.08.003
    [8] KONG X J, BAI Y H, YAN L J, LI F. Catalytic upgrading of coal gaseous tar over Y-type zeolites[J]. Fuel,2016,180:205−210.
    [9] HE L, LI S G, LIN W G. Catalytic cracking of pyrolytic vapors of low-rank coal over limonite ore[J]. Energy Fuels,2016,30:6984−6990.
    [10] JIN L J, BAI X Y, LI Y, DONG C , HU H Q, LI X. In-situ catalytic upgrading of coal pyrolysis tar on carbon-based catalyst in a fixed-bed reactor[J]. Fuel Process Technol,2016,147:41−46.
    [11] XU Y B, YUAN X, CHEN M Y, DONG A L, LIU B, JIANG F, YANG S J, LIU X H. Identification of atomically dispersed Fe-oxo species as new active sites in HZSM-5 for efficient non-oxidative methane dehydroaromatization[J]. J Catal,2021,396:224−241. doi: 10.1016/j.jcat.2021.02.028
    [12] CHAREONPANICH M, BOONFUENG T, LIMTRAKUL J. Production of aromatic hydrocarbons from Mae-Moh lignite[J]. Fuel Process Technol,2002,79(2):171−179. doi: 10.1016/S0378-3820(02)00111-X
    [13] 张海永,王永刚,张培忠,林雄超,朱豫飞. NiW/Al2O3-Y催化剂的制备及其对煤焦油加氢处理的研究[J]. 燃料化学学报,2013,41(9):1085−1091. doi: 10.1016/S1872-5813(13)60046-8

    ZHANG Hai-yong, WANG Yong-gang, ZHANG Pei-zhong, LIN Xiong-chao, ZHU Yu-fei. Preparation of NiW catalysts with alumina and zeolite Y for hydroprocessing of coal tar[J]. J Fuel Chem Technol,2013,41(9):1085−1091. doi: 10.1016/S1872-5813(13)60046-8
    [14] GU Z L, CHANG N, HOU X P, WANG J P, LIU Z K. Experimental study on the coal tar hydrocracking process in supercritical solvents[J]. Fuel,2012,91(1):33−39. doi: 10.1016/j.fuel.2011.07.032
    [15] 靳立军, 李扬, 胡浩权. 甲烷活化与煤热解耦合过程提高焦油产率研究进展[J]. 化工学报,2017,68(10):3669−3677. doi: 10.11949/j.issn.0438-1157.20170465

    JIN Li-jun, LI Yang, HU Hao-quan. Research progress of integrated methane activation with coal pyrolysis for improving coal tar yield[J]. CIESC J,2017,68(10):3669−3677. doi: 10.11949/j.issn.0438-1157.20170465
    [16] WANG Y L, YU J P, AN H H, JIN W J, QIAO J Q, SUN Y, CAO J P. Catalytic upgrading of coal tar coupling with methanol using model compound over hierarchal ZSM-5 for increasing light aromatic production under atmosphere pressure[J]. Fuel Process Technol,2021,211:106600. doi: 10.1016/j.fuproc.2020.106600
    [17] ZHANG M, MOUTSOGLOU A. Catalytic fast pyrolysis of prairie cordgrass lignin and quantification of products by pyrolysis-gas chromatography-mass spectrometry[J]. Energy Fuels,2014,28(2):1066−1073. doi: 10.1021/ef401795z
    [18] LI L, FAN H J, HU H Q. A theoretical study on bond dissociation enthalpies of coal based model compounds[J]. Fuel,2015,153:70−77. doi: 10.1016/j.fuel.2015.02.088
    [19] FU Y, NI Y M, CHEN Z Y, ZHU W L, LIU Z M. Achieving high conversion of syngas to aromatics[J]. J Eng Chem,2022,66:597−602.
    [20] XU Y F, WANG J, MA G Y, BAI J Y, DU Y X, DING M Y. Direct synthesis of aromatics from syngas over Mo-modified Fe/HZSM-5 bifunctional catalyst[J]. Appl Catal A: Gen,2020,598:117589.
    [21] FUJIMOTO K, KUDO Y, TOMINAGA H O, Synthesis gas conversion utilizing mixed catalyst composed of CO reducing catalyst and solid acid:II. Direct synthesis of aromatic hydrocarbons from synthesis gas[J]. J Catal,1984,87(1):136−143. doi: 10.1016/0021-9517(84)90176-3
    [22] XU Y, LIU D, LIU X. Conversion of syngas toward aromatics over hybrid Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolites[J]. Appl Catal A: Gen,2018,552:168−183. doi: 10.1016/j.apcata.2018.01.012
    [23] CHENG K, ZHOU W, KANG J C, HE S, SHI S l, ZHANG Q H, PAN Y, WEN W, WANG Y. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem,2017,3:334−347. doi: 10.1016/j.chempr.2017.05.007
    [24] ZHANG M H, REN J, YU Y Z. Insights into the hydrogen coverage effect and the mechanism of Fischer-Tropsch to olefins process on Fe5C2(510)[J]. ACS Catal,2020,10:689−701. doi: 10.1021/acscatal.9b03639
    [25] ZHAO H B, JIANG H, CHENG M, LIN Q, LV Y J, XU Y, XIE J Z, LIU J X, MEN Z W, MA D. Boron adsorption and its effect on stability and CO activation of χ-Fe5C2 catalyst: An ab initio DFT study[J]. Appl Catal A: Gen,2021,627:118382. doi: 10.1016/j.apcata.2021.118382
    [26] WANG S, CHEN Y Y, WEI Z H, QIN Z F, MA H, DONG M, LI J F, FAN W B, WANG J G. Polymethylbenzene or alkene cycle? theoretical study on their contribution to the process of methanol to olefins over H-ZSM-5 zeolite[J]. J Phys Chem C,2015,119(51):28482−28498. doi: 10.1021/acs.jpcc.5b10299
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  2949
  • HTML全文浏览量:  48
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 修回日期:  2022-06-02
  • 录用日期:  2022-07-11
  • 网络出版日期:  2022-08-03
  • 刊出日期:  2022-12-28

目录

    /

    返回文章
    返回