留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合成气经费托路线直接制芳烃进展

王清俊 孙来芝 陈雷 杨双霞 谢新苹 司洪宇 赵保峰 许美荣 高明杰 李天津 华栋梁

王清俊, 孙来芝, 陈雷, 杨双霞, 谢新苹, 司洪宇, 赵保峰, 许美荣, 高明杰, 李天津, 华栋梁. 合成气经费托路线直接制芳烃进展[J]. 燃料化学学报(中英文), 2023, 51(1): 52-66. doi: 10.19906/j.cnki.JFCT.2022066
引用本文: 王清俊, 孙来芝, 陈雷, 杨双霞, 谢新苹, 司洪宇, 赵保峰, 许美荣, 高明杰, 李天津, 华栋梁. 合成气经费托路线直接制芳烃进展[J]. 燃料化学学报(中英文), 2023, 51(1): 52-66. doi: 10.19906/j.cnki.JFCT.2022066
WANG Qing-jun, SUN Lai-zhi, CHEN Lei, YANG Shuang-xia, XIE Xin-ping, SI Hong-yu, ZHAO Bao-feng, XU Mei-rong, GAO Ming-jie, LI Tian-jin, HUA Dong-liang. Recent advance in directing synthesis of aromatic hydrocarbons from syngas via Fischer-Tropsch route[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 52-66. doi: 10.19906/j.cnki.JFCT.2022066
Citation: WANG Qing-jun, SUN Lai-zhi, CHEN Lei, YANG Shuang-xia, XIE Xin-ping, SI Hong-yu, ZHAO Bao-feng, XU Mei-rong, GAO Ming-jie, LI Tian-jin, HUA Dong-liang. Recent advance in directing synthesis of aromatic hydrocarbons from syngas via Fischer-Tropsch route[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 52-66. doi: 10.19906/j.cnki.JFCT.2022066

合成气经费托路线直接制芳烃进展

doi: 10.19906/j.cnki.JFCT.2022066
基金项目: 国家自然科学基金青年基金(21908117),山东省重点研发计划(重大科技创新工程)(2022CXGC010701),山东省高等学校青年创新团队项目(2019KJD002),济南市科研带头人工作室(2021GXRC095)和齐鲁工业大学(山东省科学院)校(院)地产学研协同创新基金(2020-CXY30)资助
详细信息
    通讯作者:

    Tel: 13220597603, E-mail:sunlz@sderi.cn

  • 中图分类号: TQ241;O643.36

Recent advance in directing synthesis of aromatic hydrocarbons from syngas via Fischer-Tropsch route

Funds: The project was supported by the National Natural Science Foundation of China (21908117), Key Research and Development Program of Shandong Province (2022CXGC010701), Youth Innovation Team Project of Colleges and Universities of Shandong Province (2019KJD002), Jinan Research Leader Workshop (2021GXRC095), Collaborative Innovation Fund of Qilu University of Technology (Shandong Academy of Sciences) (2020-CXY30).
  • 摘要: 芳烃作为重要的工业基础化学品,可通过合成气直接或间接法转化制备。与间接转化法相比较,合成气直接制芳烃路线(STA)具有原料转化率高、流程短、产品易分离等优点。本研究主要综述了合成气经费托路线直接制芳烃的研究进展,重点分析了金属氧化物耦合分子筛双功能催化剂中费托活性组分与助剂的选择、分子筛酸性调变、孔道结构调控等对催化反应性能的影响;归纳了反应温度、压力、空速、氢碳比等反应参数对反应性能的影响规律,并基于STA反应机理和失活机理等方面概述探讨如何提高活性和稳定性;总结归纳了合成气经费托路线制芳烃面临的主要问题以及今后研究的方向。
  • 图  1  合成气经CoC/HZSM-5制取芳烃[30]

    Figure  1  Synthesis of aromatic hydrocarbons from syngas by CoC/HZSM-5[30](with permission from ACS Publications)

    图  2  合成气经K/FeZrZn-Ni/HZSM-5制取芳烃[40]

    Figure  2  Synthesis of aromatics from syngas by K/FeZrZn-Ni/HZSM-5[40](with permission from Elsevier)

    图  3  合成气经Na-Zn-Fe/HZSM-5制取芳烃[13]

    Figure  3  Synthesis of aromatic hydrocarbons from syngas via NA-Zn-Fe /HZSM-5 [13](with permission from Elsevier)

    图  4  FeMnK/SiO2和HZSM-5催化剂不同组合方式[59]

    Figure  4  Different combinations of FeMnK/SiO2 and HZSM-5 catalysts[59](with permission from Elsevier)

    图  5  核壳 FeMn@Hollow HZSM-5纳米反应器直接将合成气转化为芳烃[48]

    Figure  5  Core-shell FeMn@Hollow HZSM-5 nanoreactor directly converts syngas to aromatics[48](with permission from ACS Publications)

    图  6  木质生物质合成气在Pd促进的 Fe/HZSM-5催化剂上合成[61]

    Figure  6  Synthesis of aroma-rich gasoline distillates from lignocellulosic biomass syngas over Fe/HZSM-5 catalyst promoted by Pd [61](with permission from ACS Publications)

    图  7  FeNiOxNa/HZSM-5用于合成气直接制芳烃反应途径[27]

    Figure  7  Reaction pathway of FeNiOxNa/HZSM-5 for direct aromatics production from syngas [27](with permission from ACS Publications)

    图  8  HZSM-5芳烃生成路径[63]

    Figure  8  Formation paths of HZSM-5 arenes [63](with permission from Elsevier)

    表  1  不同催化剂上合成气经费托路线一步法制芳烃反应条件和性能

    Table  1  Reaction conditions and performance of aromatics by one-step synthesis gas method on different catalysts

    CatalystReaction conditionsxCO
    /%
    saromatic
    /%
    Ref.
    temperature
    /℃
    pressure
    /MPa
    GHSV
    /h−1
    H2/CO
    Na-FeMnCo/HZSM-5350415001.598.055.0a[25]
    Na-FeMn/nano-HZSM-535041800295.053.0a[22]
    Fe/MnO-ZnZSM-527011600298.153.1a[46]
    FeK + HZSM-530024000027618a[38]
    Fe/Ni-HZSM-533041813299.248.0b[19]
    K-FeMnO/MoNi-ZSM-537041395297.634.1a[39]
    K/FeZrZn20-Ni/ZSM-534042000297.232.1a[40]
    Fe/HZSM-530012264285.030.0a[50]
    Fe/HZSM-5300225 mL/min157.070b[51]
    Fe/HZSM-532024000150.063b[24]
    FeNiOx(5:1)-0.41Na/HZSM-532011800146.399.4b[27]
    Na-Zn-Fe5C2-HZSM-5340210000 mL/(g·h)2.58551b[13]
    K/Zn-FeZr/Ni/HZS-534042000296.8139.48a[40]
    Mo/HZSM-5350360001.3264.497.6b[33]
    Na-Fe-Zro2/HZSM-528032400 mL/(g·h)109422a[23]
    FeNaMg-NiHZSM-537041800296.1951.38b[42]
    Fe3O4@MnO2-Hollow ZSM-5320450 mL/min7073.5b[48]
    CoMnAl-HZSM-527013000 mL/(g·h)0.534.955.5a[30]
    a: selectivity of aromatics in hydrocarbon products; b: selectivity of aromatic hydrocarbons in C5 +
    下载: 导出CSV

    表  2  合成气直接制芳烃反应的主要方程式

    Table  2  Main equations of direct aromatics production from syngas

    Reaction nameNumber of the reaction equationSerial number
    Total reaction$\left(n + 6\right){\rm{CO} } + \left(2n + 9\right){ {\rm{H} } }_{2}\to { {\rm{C} } }_{n + 6}{ {\rm{H} } }_{2n + 6} + \left(n + 6\right){ {\rm{H} } }_{2}{\rm{O}}\left(n > 0\right)$(1)
    Water vapor transformation reaction${\rm{CO}} + {{\rm{H}}}_{2}{\rm{O}}\to {\rm{C}}{{\rm{O}}}_{2} + {{\rm{H}}}_{2}$(2)
    Disproportionation$2{\rm{CO}}\to {\rm{C }}+ {\rm{C}}{{\rm{O}}}_{2}$(3)
    Methanation${\rm{CO}} + 3{{\rm{H}}}_{2}\to {\rm{C}}{{\rm{H}}}_{4} + {{\rm{H}}}_{2}{\rm{O}}$(4)
    Ethane reaction$2{\rm{CO}} + 6{{\rm{H}}}_{2}\to {{\rm{C}}}_{2}{{\rm{H}}}_{8} + 2{{\rm{H}}}_{2}{\rm{O}}$(5)
    Ethylene reaction$2{\rm{CO}} + 4{{\rm{H}}}_{2}\to {{\rm{C}}}_{2}{{\rm{H}}}_{4} + 2{{\rm{H}}}_{2}{\rm{O}}$(6)
    下载: 导出CSV
  • [1] YANG X, SU X, CHEN D, ZHANG T, HUANG Y. Direct conversion of syngas to aromatics: A review of recent studies[J]. Chin J Catal,2020,41(4):561−573. doi: 10.1016/S1872-2067(19)63346-2
    [2] LAI P-C, HSIEH C-Y, CHEN C-H, LIN Y-C. The role of non-framework Lewis acidic Al species of alkali-treated HZSM-5 in methanol aromatization[J]. Catalysts,2017,7(9):259. doi: 10.3390/catal7090259
    [3] COURTY P, GRUSON J F. Refining clean fuels for the future[J]. Oil Gas Sci Technol,2006,56(5):515−524.
    [4] 王晗, 樊升, 王森, 董梅, 秦张峰, 樊卫斌, 王建国. 二氧化碳加氢制一些烃类化合物的研究进展[J]. 燃料化学学报,2021,49(11):1609−1619. doi: 10.1016/S1872-5813(21)60122-6

    WANG Han, FAN Sheng, WANG Sen, DONG Mei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Research progresses in the hydrogenation of carbon dioxide to certain hydrocarbon products[J]. J Fuel Chem Technol,2021,49(11):1609−1619. doi: 10.1016/S1872-5813(21)60122-6
    [5] SKUTIL K, TANIEWSKI M. Indirect methane aromatization via oxidative coupling, products separation and aromatization steps[J]. Fuel Process Technol,2007,88(9):877−882. doi: 10.1016/j.fuproc.2007.04.006
    [6] HUANG K, MARAVELIAS C T. Synthesis and analysis of nonoxidative methane aromatization strategies[J]. Energy Technol,2019,8(8):1900650.
    [7] ZHU X, WANG Y, WANG G, HOU Y, YU M, YANG X, YIN F. Synergistic co-conversion of pentane and methanol to aromatics over bifunctional metal/ZSM-5 zeolite catalysts[J]. Microporous Mesoporous Mater,2021,320:111107. doi: 10.1016/j.micromeso.2021.111107
    [8] TZENG Y-Z, CHANG C-J, YANG M-C, TSAI M-J, TERAMURA K, TANAKA T, LEE H V, JUAN J C, WU J-Y, LIN Y-C. Zn-based metal-organic frameworks as sacrificial agents for the synthesis of Zn/ZSM-5 catalysts and their applications in the aromatization of methanol[J]. Catal Today,2021,375:70−78. doi: 10.1016/j.cattod.2020.01.038
    [9] MENON U, RAHMAN M, KHATIB S J. A critical literature review of the advances in methane dehydroaromatization over multifunctional metal-promoted zeolite catalysts[J]. Appl Catal A: Gen,2020,608:117870. doi: 10.1016/j.apcata.2020.117870
    [10] CHIN B L F, GORIN A, CHUA H B, TWAIQ F. Experimental investigation on tar produced from palm shells derived syngas using zeolite HZSM-5 catalyst[J]. J Energy Inst,2016,89(4):713−724. doi: 10.1016/j.joei.2015.04.005
    [11] CHEN Y, MU X, LUO X, SHI K, YANG G, WU T. Catalytic conversion of methane at low temperatures: A critical review[J]. Energy Technol,2019,8(8):1900750.
    [12] ZHU H-K, SONG G-L, LI Z-H. Computational study on thermodynamic properties of Fischer-Tropsch synthesis process[J]. Chin J Chem Phys,2019,32(5):586−596. doi: 10.1063/1674-0068/cjcp1903048
    [13] ZHAO B, ZHAI P, WANG P, LI J, LI T, PENG M, ZHAO M, HU G, YANG Y, LI Y-W, ZHANG Q, FAN W, MA D. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts[J]. Chem,2017,3(2):323−333. doi: 10.1016/j.chempr.2017.06.017
    [14] XU Y, WANG T, SHI C, LIU B, JIANG F, LIU X. Experimental investigation on the two-sided effect of acidic HZSM-5 on the catalytic performance of composite Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolite in the production of aromatics from CO2/H2[J]. Ind Eng Chem Res,2020,59(18):8581−8591. doi: 10.1021/acs.iecr.0c00992
    [15] RIEDEL T, SCHULZ H, SCHAUB G, JUN K-W, HWANG J-S, LEE K-W. Fischer-Tropsch on iron with H2/CO and H2/CO2 as synthesis gases: The episodes of formation of the Fischer-Tropsch regime and construction of the catalyst[J]. Top Catal,2003,26(1/4):41−54.
    [16] DRY M E. High quality diesel via the Fischer-Tropsch process - a review[J]. J Chem Technol Biotechnol,2002,77(1):43−50. doi: 10.1002/jctb.527
    [17] TORRES GALVIS H M, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A I, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science,2012,335(6070):835−838. doi: 10.1126/science.1215614
    [18] 李玉峰, 杨鹏举, 姜枫, 刘冰, 胥月兵, 刘小浩. 钾掺杂对Fe/GO催化合成气制α-烯烃的影响[J]. 燃料化学学报,2021,49(7):933−944. doi: 10.1016/S1872-5813(21)60063-4

    LI Yu-feng, YANG Peng-ju, JIANG Feng, LIU Bing, XU Yue-bing, LIU Xiao-hao. Effect of potassium on GO-modified large Fe3O4 microspheres for the production of α-olefins[J]. J Fuel Chem Technol,2021,49(7):933−944. doi: 10.1016/S1872-5813(21)60063-4
    [19] YANG T, CHENG L, LI N, LIU D. Effect of metal active sites on the product distribution over composite catalysts in the direct synthesis of aromatics from syngas[J]. Ind Eng Chem Res,2017,56(41):11763−11772. doi: 10.1021/acs.iecr.7b03450
    [20] DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev,2008,37(12):2758−2781. doi: 10.1039/b805427d
    [21] DAVIS B H. Fischer-Tropsch synthesis: Comparison of performances of iron and cobalt catalysts[J]. Ind Eng Chem Res,2007,46(26):8938−45. doi: 10.1021/ie0712434
    [22] CALLEJA G, DE LUCAS A, VAN GRIEKEN R. Cobalt/HZSM-5 zeolite catalyst for the conversion of syngas to hydrocarbons[J]. Appl Catal A: Gen,1991,68(1):11−29. doi: 10.1016/S0166-9834(00)84090-7
    [23] YANG X, WANG R, YANG J, QIAN W, ZHANG Y, LI X, HUANG Y, ZHANG T, CHEN D. Exploring the reaction paths in the consecutive Fe-based FT catalyst-zeolite process for syngas conversion[J]. ACS Catal,2020,10(6):3797−3806. doi: 10.1021/acscatal.9b05449
    [24] XU Y, LIU J, MA G, WANG J, LIN J, WANG H, ZHANG C, DING M. Effect of iron loading on acidity and performance of Fe/HZSM-5 catalyst for direct synthesis of aromatics from syngas[J]. Fuel,2018,228:1−9. doi: 10.1016/j.fuel.2018.04.151
    [25] NAWAZ M A, LI M, SAIF M, SONG G, WANG Z, LIU D. Harnessing the synergistic interplay of Fischer-Tropsch synthesis (Fe-Co) bimetallic oxides in Na-FeMnCo/HZSM-5 composite catalyst for syngas conversion to aromatic hydrocarbons[J]. ChemCatChem,2021,13(8):1966−1980. doi: 10.1002/cctc.202100024
    [26] 吴怡祖. MnFe/H-ZSM-5混合催化剂上CO加氢合成芳烃[J]. 南京工业大学学报(自然科学版),1992,(4):18−24.

    WU Yi-zu. Hydrogenation of CO to aromatics over MnFe/H-ZSM-5 catalyst[J]. J Nanjing Tech Univ (Nat Sci Ed),1992,(4):18−24.
    [27] WANG T, XU Y, LI Y, XIN L, LIU B, JIANG F, LIU X. Sodium-mediated bimetallic Fe-Ni catalyst boosts stable and selective production of light aromatics over HZSM-5 zeolite[J]. ACS Catal,2021,11(6):3553−74. doi: 10.1021/acscatal.1c00169
    [28] ALAYAT A, ECHEVERRIA E, SOTOUDEHNIAKARANI F, DAVID N, ARMANDO G. Alumina coated silica nanosprings (ns) support based cobalt catalysts for liquid hydrocarbon fuel production from syngas[J]. Materials,2019,12(11):1810−1825.
    [29] 席蓝萍, 邱宝成, 刘意, 张燚. 合成气直接制芳烃嵌入式Co@HZSM-5催化剂的研究[J]. 北京化工大学学报(自然科学版),2020,47(6):20−30.

    XI Lan-ping, QIU Bao-cheng, LIU Yi, ZHANG Yi. Cobalt-embedded zeolite catalysts for the direct conversion of syngas to aromatics[J]. J Beijing Univ Chem Technol (Nat Sci Ed),2020,47(6):20−30.
    [30] SUN T, LIN T, AN Y, GONG K, ZHONG L, SUN Y. Syngas conversion to aromatics over the Co2C-based catalyst and HZSM-5 via a tandem system[J]. Ind Eng Chem Res,2020,59(10):4419−27. doi: 10.1021/acs.iecr.0c00237
    [31] XU Y, WANG J, MA G, BAI J, DU Y, DING M. Direct synthesis of aromatics from syngas over Mo-modified Fe/HZSM-5 bifunctional catalyst[J]. Appl Catal A: Gen,2020,598:117589−117598.
    [32] LIU S, GUJAR A C, THOMAS P, TOGHIANI H, WHITE M G. Synthesis of gasoline-range hydrocarbons over Mo/HZSM-5 catalysts[J]. Appl Catal A: Gen,2009,357(1):18−25. doi: 10.1016/j.apcata.2008.12.033
    [33] LU Y, HU J, HAN J, YU F. Synthesis of gasoline-range hydrocarbons from nitrogen-rich syngas over a Mo/HZSM-5 bi-functional catalyst[J]. J Energy Inst,2016,89(4):782−792. doi: 10.1016/j.joei.2015.03.010
    [34] FU Y, NI Y, ZHU W, LIU Z. Enhancing syngas-to-aromatics performance of ZnO&H-ZSM-5 composite catalyst via Mn modulation[J]. J Catal,2020,383:97−102. doi: 10.1016/j.jcat.2019.12.044
    [35] LIU J, HE Y, YAN L, MA C, ZHANG C, XIANG H, WEN X, LI Y. Nano-ZrO2 as hydrogenation phase in bi-functional catalyst for syngas aromatization[J]. Fuel,2020,263:116803−116815.
    [36] CHENG K, ZHOU W, KANG J, HE S, SHI S, ZHANG Q, PAN Y, WEN W, WANG Y. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem,2017,3(2):334−347. doi: 10.1016/j.chempr.2017.05.007
    [37] YANG Y. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2004,266(2):181−194. doi: 10.1016/j.apcata.2004.02.018
    [38] WEBER J L, MARTíNEZ DEL MONTE D, BEERTHUIS R, DUFOUR J, MARTOS C, DE JONG K P, DE JONGH P E. Conversion of synthesis gas to aromatics at medium temperature with a fischer tropsch and ZSM-5 dual catalyst bed[J]. Catal Today,2021,369:175−183. doi: 10.1016/j.cattod.2020.05.016
    [39] CHENG L, MENG C, YANG T, LI N, LIU D. One-step synthesis of aromatics from syngas over K-modified FeMnO/MoNi-ZSM-5[J]. Energy Fuels,2018,32(9):9756−9762. doi: 10.1021/acs.energyfuels.8b01965
    [40] XU H, LI M, NAWAZ M A, LIU D. Doping of K and Zn elements in FeZr-Ni/ZSM-5: Highly selective catalyst for syngas to aromatics[J]. Catal Commun,2019,121:95−99. doi: 10.1016/j.catcom.2019.01.001
    [41] LI M, NAWAZ M A, SONG G, ZAMAN W Q, LIU D. Influential role of elemental migration in a composite iron-zeolite catalyst for the synthesis of aromatics from syngas[J]. Ind Eng Chem Res,2020,59(19):9043−9054. doi: 10.1021/acs.iecr.0c01282
    [42] YANG S, LI M, NAWAZ M A, SONG G, XIAO W, WANG Z, LIU D. High selectivity to aromatics by a Mg and Na Co-modified catalyst in direct conversion of syngas[J]. ACS Omega,2020,5(20):11701−9. doi: 10.1021/acsomega.0c01007
    [43] ZHANG Q, KANG J, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity[J]. ChemCatChem,2010,2(9):1030−1058. doi: 10.1002/cctc.201000071
    [44] KREITMAN K. Manganese-oxide-supported iron Fischer-Tropsch synthesis catalysts: Physical and catalytic characterization[J]. J Catal,1987,105(2):319−334. doi: 10.1016/0021-9517(87)90061-3
    [45] BAI L, XIANG H-W, LI Y-W, HAN Y-Z, ZHONG B. Slurry phase Fischer-Tropsch synthesis over manganese-promoted iron ultrafine particle catalyst[J]. Fuel,2002,81(11/12):1577−1581.
    [46] 王德生, 曾海生, 关乃佳. Fe/MnO-ZnZSM-5双功能催化剂上合成气直接转化为芳烃的反应[J]. 催化学报,2002,23(4):333−335. doi: 10.3321/j.issn:0253-9837.2002.04.012

    WANG De-sheng, ZENG Hai-sheng, GUAN Nai-jia. Direct conversion of syngas into aromatics over bifunctional Fe/MnO-ZnZSM-5 catalyst[J]. Chin J Catal,2002,23(4):333−335. doi: 10.3321/j.issn:0253-9837.2002.04.012
    [47] 席蓝萍. 费托合成产物分布的调控—Co基催化剂的研究[D]. 北京: 北京化工大学, 2020.

    XI Lan-ping. Regulation of product distribution in Pheto synthesis-Co-based catalysts[D]. Beijing: Beijing University of Chemical Technology, 2020.
    [48] XU Y, WANG J, MA G, ZHANG J, DING M. Hollow zeolite nanoparticles combined with Fe3O4@MnO2 tandem catalyst for converting syngas to aromatics-rich gasoline[J]. ACS Appl Nano Mater,2020,3(3):2857−2866. doi: 10.1021/acsanm.0c00123
    [49] WEI J, GE Q, YAO R, WEN Z, FANG C, GUO L, XU H, SUN J. Directly converting CO2 into a gasoline fuel[J]. Nat Commun,2017,8:15174. doi: 10.1038/ncomms15174
    [50] PLANA-PALLEJà J, ABELLó S, BERRUECO C, MONTANÉ D. Effect of zeolite acidity and mesoporosity on the activity of Fischer-Tropsch Fe/ZSM-5 bifunctional catalysts[J]. Appl Catal A: Gen,2016,515:126−135. doi: 10.1016/j.apcata.2016.02.004
    [51] 文承彦, 王晨光, 刘琪英, 陈伦刚, 马隆龙, 吕微. Fe/ZSM-5催化剂的酸性与孔隙特性对合成气直接制备芳烃的影响[J]. 新能源进展,2018,6(3):222−228. doi: 10.3969/j.issn.2095-560X.2018.03.009

    WEN Cheng-yan, WANG Chen-guang, LIU Qi-ying, CHEN Lun-gang, MA Long-long, LV Wei. Effect of acidity and pore characteristics of Fe/ZSM-5 catalyst on direct transformation from syngas to aromatics[J]. Adv Energy Plann,2018,6(3):222−228. doi: 10.3969/j.issn.2095-560X.2018.03.009
    [52] LI J, HAN D, HE T, LIU G, ZI Z, WANG Z, WU J, WU J. Nanocrystal H[Fe, Al]ZSM-5 zeolites with different silica-alumina composition for conversion of dimethyl ether to gasoline[J]. Fuel Process Technol,2019,191:104−110. doi: 10.1016/j.fuproc.2019.03.029
    [53] YANG X, SU X, LIANG B, ZHANG Y, DUAN H, MA J, HUANG Y, ZHANG T. The influence of alkali-treated zeolite on the oxide-zeolite syngas conversion process[J]. Catal Sci Technol,2018,8(17):4338−4348. doi: 10.1039/C8CY01332B
    [54] HE J, CHEN D, LI N, XU Q, LI H, HE J, LU J. Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCu alloy nanoparticles for complete oxidation of toluene[J]. Appl Catal B: Environ,2020,265:118560. doi: 10.1016/j.apcatb.2019.118560
    [55] XU Y, LIU J, WANG J, MA G, LIN J, YANG Y, LI Y, ZHANG C, DING M. Selective conversion of syngas to aromatics over Fe3O4@MnO2 and hollow HZSM-5 bifunctional catalysts[J]. ACS Catal,2019,9(6):5147−5156. doi: 10.1021/acscatal.9b01045
    [56] WEN C, WANG C, CHEN L, ZHANG X, LIU Q, MA L. Effect of hierarchical ZSM-5 zeolite support on direct transformation from syngas to aromatics over the iron-based catalyst[J]. Fuel,2019,244:492−498. doi: 10.1016/j.fuel.2019.02.041
    [57] YANG J, PAN X, JIAO F, LI J, BAO X. Direct conversion of syngas to aromatics[J]. Chem Commun (Camb),2017,53(81):11146−11149. doi: 10.1039/C7CC04768A
    [58] MA Y, CAI D, LI Y, WANG N, MUHAMMAD U, CARLSSON A, TANG D, QIAN W, WANG Y, SU D, WEI F. The influence of straight pore blockage on the selectivity of methanol to aromatics in nanosized Zn/ZSM-5: An atomic Cs-corrected STEM analysis study[J]. RSC Adv,2016,6(78):74797−74801. doi: 10.1039/C6RA19073A
    [59] XU Y, LIU J, MA G, WANG J, WANG Q, LIN J, WANG H, ZHANG C, DING M. Synthesis of aromatics from syngas over FeMnK/SiO2 and HZSM-5 tandem catalysts[J]. Mol Catal,2018,454:104−113. doi: 10.1016/j.mcat.2018.05.019
    [60] 刘大鹏. 合成气直接催化转化制芳烃[D]. 无锡: 江南大学, 2018.

    LIU Da-peng. Direct synthesis of aromatic formations from syngas[D]. Wuxi: Jiangnan University, 2018.
    [61] YAN Q, LU Y, WAN C, HAN J, RODRIGUEZ J, YIN J-J, YU F. Synthesis of aromatic-rich Gasoline-range hydrocarbons from biomass-derived syngas over a Pd-promoted Fe/HZSM-5 catalyst[J]. Energy Fuels,2014,28(3):2027−34. doi: 10.1021/ef402507u
    [62] ZHANG P, TAN L, YANG G, TSUBAKI N. One-pass selective conversion of syngas to para-xylene[J]. Chem Sci,2017,8(12):7941−7946. doi: 10.1039/C7SC03427J
    [63] XU Y, LIU D, LIU X. Conversion of syngas toward aromatics over hybrid Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolites[J]. Appl Catal A: Gen,2018,552:168−183. doi: 10.1016/j.apcata.2018.01.012
    [64] WANG S, WU T, LIN J, TIAN J, JI Y, PEI Y, YAN S, QIAO M, XU H, ZONG B. FeK on 3D graphene-zeolite tandem catalyst with high efficiency and versatility in direct CO2 conversion to aromatics[J]. ACS Sustainable Chem Eng,2019,7(21):17825−17833. doi: 10.1021/acssuschemeng.9b04328
    [65] YAN Q, DOAN P T, TOGHIANI H, GUJAR A C, WHITE M G. Synthesis gas to hydrocarbons over CuO-CoO-Cr2O3/H-ZSM-5 bifunctional catalysts[J]. J Phys Chem C,2008,112(31):11847−11858. doi: 10.1021/jp801640c
    [66] NIU X, GAO J, WANG K, MIAO Q, DONG M, WANG G, FAN W, QIN Z, WANG J. Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics[J]. Fuel Process Technol,2017,157:99−107. doi: 10.1016/j.fuproc.2016.12.006
    [67] WEBER J L, KRANS N A, HOFMANN J P, HENSEN E J M, ZECEVIC J, DE JONGH P E, DE JONG K P. Effect of proximity and support material on deactivation of bifunctional catalysts for the conversion of synthesis gas to olefins and aromatics[J]. Catal Today,2020,342:161−166. doi: 10.1016/j.cattod.2019.02.002
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  3273
  • HTML全文浏览量:  136
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-25
  • 修回日期:  2022-07-13
  • 录用日期:  2022-07-14
  • 网络出版日期:  2022-08-11
  • 刊出日期:  2023-01-10

目录

    /

    返回文章
    返回