留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙中毒商用SCR脱硝催化剂的再生特性研究

徐欣蓉 吴昊 喻乐蒙 庄柯 汤光华 杨宏旻

徐欣蓉, 吴昊, 喻乐蒙, 庄柯, 汤光华, 杨宏旻. 钙中毒商用SCR脱硝催化剂的再生特性研究[J]. 燃料化学学报(中英文), 2023, 51(4): 502-510. doi: 10.19906/j.cnki.JFCT.2022068
引用本文: 徐欣蓉, 吴昊, 喻乐蒙, 庄柯, 汤光华, 杨宏旻. 钙中毒商用SCR脱硝催化剂的再生特性研究[J]. 燃料化学学报(中英文), 2023, 51(4): 502-510. doi: 10.19906/j.cnki.JFCT.2022068
XU Xin-rong, WU Hao, YU Le-meng, ZHUANG Ke, TANG Guang-hua, YANG Hong-min. Regeneration characteristics of Ca-poisoned commercial selective catalytic reduction denitrification catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 502-510. doi: 10.19906/j.cnki.JFCT.2022068
Citation: XU Xin-rong, WU Hao, YU Le-meng, ZHUANG Ke, TANG Guang-hua, YANG Hong-min. Regeneration characteristics of Ca-poisoned commercial selective catalytic reduction denitrification catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 502-510. doi: 10.19906/j.cnki.JFCT.2022068

钙中毒商用SCR脱硝催化剂的再生特性研究

doi: 10.19906/j.cnki.JFCT.2022068
基金项目: 国家自然科学基金 (51676101),江苏省自然科学基金 (BK20161558)和江苏省社会发展-面上项目(BE2020754)资助
详细信息
    通讯作者:

    E-mail: yanghongmin@njnu.edu.cn

  • 中图分类号: X705

Regeneration characteristics of Ca-poisoned commercial selective catalytic reduction denitrification catalyst

Funds: The project was supported by the National Natural Science Foundation of China (51676101), the Natural Science Foundation of Jiangsu Province (BK20161558) and the Social Development of Jiangsu Province General Project (BE2020754).
  • 摘要:

    本研究分别选用络合剂氨基三甲叉膦酸(ATMP)、2-膦酸基丁烷-1,2,4-三羧酸(PBTCA)对钙中毒商用SCR脱硝催化剂(V2O5-WO3/TiO2)开展了再生方法研究,借助BET、NH3-TPD、H2-TPR和XPS等分析测试方法和实验探究考察了再生前后催化剂的理化特性及再生脱硝性能。结果表明,ATMP与PBTCA具有高效的再生性能,再生催化剂的脱硝效率在400 ℃下分别从25.8%恢复至89.8%与88.1%。与稀H2SO4再生相比,ATMP与PBTCA对催化剂的再生具有更高的除钙率与更低的钒损失率(不足5%)。使用ATMP与PBTCA对催化剂再生可有效恢复催化剂表面的Brønsted酸性位;催化剂表面的活性钒物种V5 + 和表面化学吸附氧Oα明显增加,催化剂整体活性达到最优水平。因此,将络合剂ATMP与PBTCA用于失活SCR脱硝催化剂的再生具有广阔的应用前景。

  • FIG. 2209.  FIG. 2209.

    FIG. 2209.  FIG. 2209.

    图  1  SCR催化剂活性评价系统示意图

    Figure  1  Evaluation system of SCR catalyst activity

    图  2  不同再生方法对脱硝效率的影响

    Figure  2  Effects of different regeneration methods on denitration efficiency

    图  3  ATMP质量分数对脱硝效率的影响

    Figure  3  Effect of ATMP concentration on denitration efficiency

    图  4  催化剂的孔径分布

    Figure  4  Pore size distribution of catalysts

    图  5  催化剂的XRD谱图

    Figure  5  XRD patterns of catalysts

    图  6  催化剂的Py-FTIR光谱谱图

    Figure  6  Py-FTIR spectra of catalysts

    图  7  催化剂的NH3-TPD谱图

    (a):TPD曲线;(b):TPD曲线分峰

    Figure  7  NH3-TPD profiles of catalysts

    图  8  催化剂的H2-TPR谱图

    Figure  8  H2-TPR profiles of catalysts

    图  9  催化剂的XPS谱图

    (a):V 2p2/3图谱;(b):O 1s图谱

    Figure  9  XPS profiles of catalysts

    图  10  催化剂再生机理示意图

    Figure  10  Schematic diagram of mechanism of regeneration of catalyst

    表  1  催化剂的元素组成

    Table  1  Elemental component of catalysts(%)

    ElementalFreshPoisonedATMP-SPBTCA-SH2SO4-SH2O-S
    Ca0.993.381.031.081.381.75
    V0.340.330.330.330.300.32
    W4.314.154.134.123.984.12
    下载: 导出CSV

    表  2  催化剂的比表面积和孔体积

    Table  2  Surface area and pore volume of catalyst

    CatalystBET surface area /
    (m2·g−1)
    Pore volume /
    (cm3·g−1)
    Pore diameter /
    nm
    Fresh53.620.2518.70
    Poisoned44.100.2219.90
    PBTCA-S52.760.2518.78
    ATMP-S53.030.2418.84
    下载: 导出CSV

    表  3  催化剂的酸性位参数

    Table  3  Acid sites parameters of catalysts

    CatalystTotal acid amount /
    (μmol·g−1
    Brønsted acid
    (1544 cm−1
    Lewis acid
    (1445 cm−1
    Fresh32.6175.56
    Poisoned19.2850.30
    PBTCA-S28.5767.16
    ATMP-S30.3271.45
    下载: 导出CSV
  • [1] LI J H, PENG Y, CHANG H Z, LI X, CRITTENDEN J. HAO J M. Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources[J]. Front Environ Sci Eng,2016,10(3):413−427. doi: 10.1007/s11783-016-0832-3
    [2] ZHANG D J, WANG C J, LIU Q Y, LIU Z Y, LEI T Y, WANG B D. The combined effects of alkaline-earth metal. SO2 and CO2 on the selective catalytic reduction of NO by NH3 over V2O5-WO3/TiO2 catalyst[J]. Environ Technol Innov,2019,14:100331. doi: 10.1016/j.eti.2019.100331
    [3] LI X, LI X S, LI J H. HAO J M. High calcium resistance of CeO2-WO3 SCR catalysts: Structure investigation and deactivation analysis[J]. Chem Eng J,2017,317:70−79. doi: 10.1016/j.cej.2017.02.027
    [4] LI X, LI X S, YANG R T, MO J S, LI J H. HAO J M. The poisoning effects of calcium on V2O5-WO3/TiO2 catalyst for the SCR reaction: Comparison of different forms of calcium[J]. Mol Catal,2017,434:16−24. doi: 10.1016/j.mcat.2017.01.010
    [5] ZHANG Q J, WU Y F. YUAN H R. Recycling strategies of spent V2O5-WO3/TiO2 catalyst: A review[J]. Res Conserv Recycl,2020,161:104983. doi: 10.1016/j.resconrec.2020.104983
    [6] CHEN L, LI J H, GE M F. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chem Eng J,2011,170(2/3):531−537.
    [7] 樊雪. 含Ca化合物对钒钛基SCR催化剂脱硝活性的影响[D]. 北京: 北京化工大学, 2016.

    FAN Xue. Influence of Ca-based compounds on SCR activity of V2O5-WO3/TiO2 catalyst[D]. Beijing: Beijing University of Chemical Technology, 2016.
    [8] 崔力文, 宋浩, 吴卫红, 杜学森, 纪培栋, 高翔, 骆仲泱, 岑可法. 电站失活SCR催化剂再生试验研究[J]. 能源工程,2012,(3):43−46.

    CUI Wen-li, SONG Hao, WU Wei-hong, DU Xue-shen, JI Pei-dong, GAO Xiang, LUO Zhong-yang, CEN Ke-fa. A research on the regeneration of deactivated SCR catalyst used in coal-fired plant[J]. Energy Eng,2012,(3):43−46.
    [9] LI X S, LIU C D, LI X, PENG Y. LI J H. A neutral and coordination regeneration method of Ca-poisoned V2O5-WO3/TiO2 SCR catalyst[J]. Catal Commun,2017,100:112−116. doi: 10.1016/j.catcom.2017.06.034
    [10] 周凯, 李国波, 陆斌, 陆斌, 王圣, 张亚平, 滕玉婷, 李娟. 失活V2O5-WO3/TiO2 SCR 脱硝催化剂的再生方法[J]. 硅酸盐学报,2019,47(7):916−923.

    ZHOU Kai, LI Guo-bo, LU Bin, WANG Sheng, ZHANG Ya-ping, TENG Yu-ting, LI Juan. Regeneration of deactivated V2O5-WO3/TiO2 selective catalytic reduction denitration catalyst[J]. J Chin Ceram Soc,2019,47(7):916−923.
    [11] LI X, LI X S, CHEN J J, LI J H. HAO J M. An efficient novel regeneration method for Ca-poisoning V2O5-WO3/TiO2 catalyst[J]. Catal Commun,2016,87:45−48. doi: 10.1016/j.catcom.2016.06.017
    [12] 夏明珠, 雷武, 戴林宏, 褚玉婷, 王风云等. 膦系阻垢剂对碳酸钙阻垢机理的研究[J]. 化学学报,206,68(2):143−148.

    XIA Ming-zhu, LEI Wu, DAI Lin-hong, WANG Feng-yun. Study of the mechanism of phosphonate scale inhibitors against calcium carbonate scale[J]. Acta Chim Sin,206,68(2):143−148.
    [13] ZHENG Y J, JENSEN A D, JOHNSSON J E. Deactivation of V2O5-WO3/TiO2 SCR catalyst at a biomass-fired combined heat and power plant[J]. Appl Catal B: Environ, 2005, 60(3/4): 253−264.
    [14] GUO Y Y, XU X F, GAO H, ZHENG Y, LUO L L. ZHU T Y. Ca-Poisoning effect on V2O5-WO3/TiO2 and V2O5-WO3-CeO2/TiO2 catalysts with different vanadium loading[J]. Catalysts,2021,11(4):445. doi: 10.3390/catal11040445
    [15] 蒋威宇. V2O5-WO3/TiO2催化剂协同净化NOx与氯代芳香化合物的反应特征与副产物研究[D]. 杭州: 浙江大学, 2020.

    JIANG Wei-yu. Reaction characteristics and byproducts analyses over V2O5-WO3/TiO2 catalyst in the synergistic elimination of NOx and chloroaromatics[D]. Hangzhou: Zhejiang University, 2020.
    [16] 沈伯雄, 卢凤菊, 高兰君, 岳时吉. 中温商业SCR催化剂碱和碱土中毒特性研究[J]. 燃料化学学报,2016,44(4):500−506.

    SHEN Bo-xiong, LU Feng-ju, GAO Lan-jun, YUE Shi-ji. Study on alkali and alkaline earths poisoning characteristics for a commercial SCR catalyst[J]. J Fuel Chem Technol,2016,44(4):500−506.
    [17] 杜学森. 钛基SCR脱硝催化剂中毒失活及抗中毒机理的实验和分子模拟研究[D]. 杭州: 浙江大学, 2014.

    DU Xue-sen. An experimental and theoretical study on the anti-poisoning of the titania-based SCR catalyst[D]. Hangzhou: Zhejiang University, 2014.
    [18] 何德良, 任慧莺, 朱天时, 张勤, 陶莉. V2O5-WO3/TiO2 SCR催化剂的钙中毒机理研究[J]. 应用基础与工程科学学报,2018,26(1):1−11.

    HE De-liang, REN Hui-ying, ZHU Tian-shi, ZHANG Qin, TAO Li. Study on calcium poisoning mechanism of V2O5-WO3/TiO2 SCR catalyst[J]. J Basic Sci Eng,2018,26(1):1−11.
    [19] LI J X, ZHANG P, CHEN L, ZHANG Y J, QI L Q. Regeneration of selective catalyst reduction catalysts deactivated by Pb. As, and alkali metals[J]. ACS Omega,2020,5(23):13886−13893. doi: 10.1021/acsomega.0c01283
    [20] LI J Y, TANG X L, GAO F Y, YI H H. ZHAO S Z. Studies on the calcium poisoning and regeneration of commercial De-NOx SCR catalyst[J]. Chem Pap,2017,71(10):1921−1928. doi: 10.1007/s11696-017-0186-8
    [21] WANG X X, MA H Y, SHI Y, WANG Q L, XU P L, LI W. LI S J. Regeneration of alkali poisoned TiO2-based catalyst by various acids in NO selective catalytic reduction with NH3[J]. Fuel,2021,285:119069. doi: 10.1016/j.fuel.2020.119069
    [22] WANG D, LUO J M, YANG Q L, YAN J C, ZHANG K H, ZHANG W Q, PENG Y, LI J H. CRITTENDEN J. Deactivation mechanism of multipoisons in cement furnace flue gas on selective catalytic reduction catalysts[J]. Environ Sci Technol,2019,53(12):6937−6944. doi: 10.1021/acs.est.9b00337
    [23] MIAO J F, YI X F, SU Q F, LI H R, CHEN J S. WANG J X. Poisoning effects of phosphorus, potassium and lead on V2O5-WO3/TiO2 catalysts for selective catalytic reduction with NH3[J]. Catalysts,2020,10(3):345. doi: 10.3390/catal10030345
    [24] ALI Z, LU Q, IQBAL T, ARAIN Z, HAN J, WU Y W, LIU D J. YANG Y P. Poisoning effects of lead species on the V2O5-WO3/TiO2 type NH3-selective catalytic reduction catalyst[J]. Asia-Pac J Chem Eng,2019,14(3):e2309. doi: 10.1002/apj.2309
    [25] LI M Y, ZENG Y Q, ZHANG S L, REN Y J, DEND L F, ZHONG Q. Inhibition effect of naphthalene on V2O5-WO3/TiO2 catalysts for low-temperature NH3-SCR of NOx[J]. Fuel,2022,322:124157. doi: 10.1016/j.fuel.2022.124157
    [26] ZHANG B L, DENG L F, LIEBAU M, WANG P Q, REN Y J, LIU B, LUO C Y, GLASER R. ZHANG S G. Tar induced deactivation and regeneration of a commercial V2O5-MoO3/TiO2 catalyst during selective catalytic reduction of NO with NH3[J]. Fuel,2022,316:123324. doi: 10.1016/j.fuel.2022.123324
    [27] KAPKOWSKI M, SIUDYGA T, SITKO R, NIEMCZYK-WOJDYLA A, ZELENKA T, ZELENKOVA G, GOLBA S, SMOLINSKI A. POLANSKI P. Toward a viable ecological method for regenerating a commercial SCR catalyst-Selectively leaching surface deposits and reconstructing a pore landscape[J]. J Clean Prod,2021,316:128291. doi: 10.1016/j.jclepro.2021.128291
    [28] WANG Q L, WANG R, HUANG X N. SHI H C. Sulfur/water resistance and regeneration of MnOx-CeO2/TiO2 catalyst for low-temperature selective catalytic reduction of NOx[J]. JECE,2022,10(2):107345.
    [29] ZHANG H D, KONG M, CAI Z L, JIANG L J, LIU Q C, YANG J, REN S, LI J L, DUAN M H. Synergistic effect of arsenic and different potassium species on V2O5-WO3/TiO2 catalyst poisoning: Comparison of ClSO42− and NO3− anions[J]. Catal Commun,2020,144:106069. doi: 10.1016/j.catcom.2020.106069
    [30] TOPSØE N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy[J]. Science,1994,265(5176):1217−1219.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  732
  • HTML全文浏览量:  148
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-24
  • 修回日期:  2022-07-31
  • 录用日期:  2022-08-03
  • 网络出版日期:  2022-08-11
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回