留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用煤气化半焦回收赤泥构建Fe/碳基复合微波吸收材料

梁丽萍 刘雪琴 高旭洲 石树平 苏宁静 力国民

梁丽萍, 刘雪琴, 高旭洲, 石树平, 苏宁静, 力国民. 利用煤气化半焦回收赤泥构建Fe/碳基复合微波吸收材料[J]. 燃料化学学报(中英文), 2023, 51(5): 703-710. doi: 10.19906/j.cnki.JFCT.2022073
引用本文: 梁丽萍, 刘雪琴, 高旭洲, 石树平, 苏宁静, 力国民. 利用煤气化半焦回收赤泥构建Fe/碳基复合微波吸收材料[J]. 燃料化学学报(中英文), 2023, 51(5): 703-710. doi: 10.19906/j.cnki.JFCT.2022073
LIANG Li-ping, LIU Xue-qin, GAO Xu-zhou, SHI Shu-ping, SU Ning-jing, LI Guo-min. Recycling of red mud to Fe/C-based composite microwave absorbents by coal gasification semi-coke[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 703-710. doi: 10.19906/j.cnki.JFCT.2022073
Citation: LIANG Li-ping, LIU Xue-qin, GAO Xu-zhou, SHI Shu-ping, SU Ning-jing, LI Guo-min. Recycling of red mud to Fe/C-based composite microwave absorbents by coal gasification semi-coke[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 703-710. doi: 10.19906/j.cnki.JFCT.2022073

利用煤气化半焦回收赤泥构建Fe/碳基复合微波吸收材料

doi: 10.19906/j.cnki.JFCT.2022073
基金项目: 国家自然科学基金(51802212),国家级重点支持领域大学生创新创业训练计划(2021465)和中国-白俄罗斯电磁环境效应“一带一路”联合实验室开放基金 (ZBKF2022030802) 资助
详细信息
    通讯作者:

    E-mail: liangliping@tyust.edu.cn

    ligm@tyust.edu.cn

  • 中图分类号: TB34

Recycling of red mud to Fe/C-based composite microwave absorbents by coal gasification semi-coke

Funds: The project was supported by the National Nature Science Foundation of China (51802212), the National College Students’ Innovation and Entrepreneurship Training Program (2021465) and China-Belarus Belt and Road Joint Laboratory on Electromagnetic Environment Effect (ZBKF2022030802).
  • 摘要: 基于煤加氢气化半焦(简称半焦,SC)与赤泥(RM)高温固相反应一步回收赤泥制备Fe/碳基复合微波吸收材料,调节体系组成以优化吸波性能。研究发现,在Ar气氛、900 ℃条件下,源自SC与RM质量比为0.4∶1−0.7∶1的复合物均显示了优良的性能;且当SC与RM质量比为0.6∶1时,复合物性能最优。其最低模拟反射损耗为−48.3 dB,相应的有效吸收带宽为4.6 GHz。材料强的本征衰减能力源于石墨化碳及大量相界与缺陷引起的介电损耗;其良好的波阻抗匹配得益于体系组成调变对复合物电磁参数的有效调控。此外,Na2O、Al2O3与SiO2之间的高温固相化合一定程度上削弱了赤泥引起的强碱性。
  • FIG. 2300.  FIG. 2300.

    FIG. 2300.  FIG. 2300.

    图  1  不同热处理温度下制备样品的XRD谱图(a)与主要物相的标准谱图(b)

    Figure  1  XRD patterns of the samples obtained at various heat treatment temperatures (a) and the standard data of main phases (b)

    图  2  样品SCRM900-0.6 (a)与 SC (b)的SEM照片

    Figure  2  SEM images of samples SCRM900-0.6 (a) and SC (b)

    图  3  不同MRSR条件下制备样品的XRD谱图(a)与拉曼光谱谱图(b)

    Figure  3  XRD patterns (a) and Raman spectra (b) of the samples obtained at different MRSR

    图  4  不同MRSR条件下制备样品的反射损耗(RL)与阻抗匹配特性参数(Z)模拟曲线 (a)−(e)及衰减常数(α)曲线 (f)

    Figure  4  Simulated reflection loss (RL) and impedance matching characteristic (Z ) curves (a)−(e) as well as attenuation constant (α) curves (f) of the samples obtained at different MRSR

    (a): SCRM900-0.4; (b): SCRM900-0.5; (c): SCRM900-0.6; (d): SCRM900-0.7; (e): SC900

    图  5  不同MRSR条件下样品的复介电常数(a)与(b)、复磁导率(c)与损耗因子(d)曲线

    Figure  5  Curves of permittivity (a) and (b), permeability (c) and loss tangents (d) of samples obtained at different MRSR

    图  6  典型样品SCRM900-0.6与SC900的Cole-Cole半圆

    Figure  6  Cole-Cole semicircles of the typical samples SCRM900-0.6 and SC900

    表  1  热处理过程中的主要化学反应与其热力学数据

    Table  1  Major reactions during heat treatment and their thermodynamic data

    No.ReactionΔrGT θ /(J·mol−1)ts /℃tf /℃
    (a)3Fe2O3 + C = 2Fe3O4 + CO125275−222.53T289.8
    (b)Fe3O4 + C = 3FeO + CO191743−227.79T568.6
    (c)FeO + C = Fe + CO161519−158.46T746.2
    (d)3Fe2O3 + CO = 2Fe3O4 + CO2−47184−46.67Tany temperature
    (e)Fe3O4 + CO = 3FeO + CO219284−51.92T98.3
    (f)FeO + CO = Fe + CO2−10940 + 17.41T355.2
    (g)CO2 + C = 2CO172459−175.87T707.5
    (h)C = [C]22590−42.26T261.4
    (i)2CO = [C] + CO2−143960 + 128.7T845.4
    (j)[Na6Al6Si6O24]·[Na2CO3]= 6NaAlSiO4 + Na2O + CO2
    (k)Na2O + Al2O3 + 2SiO2 = 2NaAlSiO4−168483−30.58Tany temperature
    ΔrGTθ is the standard Gibbs free energy change of the reaction, T is thermodynamic temperature, ts and tf are the thermodynamic initial and terminational temperatures in the standard state, [C] represents carbon in intermetallic of Fe and carbon, “−” represents no data obtained
    下载: 导出CSV

    表  2  相关材料的微波吸收性能

    Table  2  Microwave absorption performance data for the related materials in current literatures

    Absorption materailRLmin /dBMatching frequency /GHzEAB /GHzSimulating thickness /mmRef.
    C/Fe3O4 nanoparticles−58.514.95.6 (12.4−18.0)2.0[3]
    C/MnFe2O4/MnO2 heterojunction−72.110.55.0 (8.4−13.4)2.8[4]
    Fe@C microspheres−37.713.47.5 (10.5−18.0)3.0[30]
    FeCo/C (from bamboo)−40.014.14.7 (6.6−11.3)1.9[14]
    Fe3O4@C (from walnut shell)−40.317.54.3 (13.7−18.0)2.0[31]
    Fe/C (from coal gasification slag)−47.15.55.3 (12.4−17.7)1.5[16]
    SCRM900-0.6−48.315.14.5 (12.9−17.4)1.5this work
    下载: 导出CSV
  • [1] WANG B L, WU Q, FU Y G, LIU T. A review on carbon/magnetic metal composites for microwave absorption[J]. J Mater Sci Technol,2021,86:91−109. doi: 10.1016/j.jmst.2020.12.078
    [2] MENG X, YANG W W, HAN G H, YU Y S, MA S, LIU W, ZHANG Z D. Three-dimensional foam-like Fe3O4@C core-shell nanocomposites: Controllable synthesis and wideband electromagnetic wave absorption properties[J]. J Magn Magn Mater,2020,502:166518. doi: 10.1016/j.jmmm.2020.166518
    [3] MENG X, LEI W J, YANG W W, LIU Y Q, YU Y S. Fe3O4 nanoparticles coated with ultra-thin carbon layer for polarization-controlled microwave absorption performance[J]. J Colloid Interf Sci,2021,600:382−389. doi: 10.1016/j.jcis.2021.05.055
    [4] MENG X, HE L, LIU Y Q, YU Y S, YANG W W. Carbon-coated defect-rich MnFe2O4/MnO heterojunction for high-performance microwave absorption[J]. Carbon,2022,194:207−219. doi: 10.1016/j.carbon.2022.03.075
    [5] CHE R C, PENG L M, DUAN X F, CHEN Q, LIANG X L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes[J]. Adv Mater,2004,16(5):401−405. doi: 10.1002/adma.200306460
    [6] CHE R C, ZHI C Y, LIANG C Y, ZHOU X G. Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite[J]. Appl Phys Lett,2006,88(3):033105. doi: 10.1063/1.2165276
    [7] WANG X Y, LU Y K, ZHU T, CHANG S C, WANG W. CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption[J]. Chem Eng J,2020,388:124317. doi: 10.1016/j.cej.2020.124317
    [8] XU J D, LI R S, JI S R, ZHAO B C, CUI T R, TAN X C, GOU G Y, JIAN J M, XU H K, QIAO Y C, YANG Y, ZHANG S, REN T L. Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications[J]. ACS Nano,2021,15:8907−8918. doi: 10.1021/acsnano.1c01552
    [9] 胡正浪, 吴海华, 杨增辉, 姜建堂, 周建新. 石墨烯-铁镍合金-聚乳酸复合材料的制备及其吸波性能[J]. 复合材料学报,2022,39(7):3310−3323.

    HU Zheng-lang, WU Hai-hua, YANG Zeng-hui, JIANG Jian-tang, ZHOU Jian-xin. Preparation and microwave absorbing properties of grapheme-iron-nickel alloy-poly(lactic acid) composites[J]. Acta Mater Compos Sin,2022,39(7):3310−3323.
    [10] QIAO M T, LEI X F, MA Y, TIAN L D, HE X W, SU K H, ZHANG Q Y. Application of yolk-shell Fe3O4@n-doped carbon nanochains as highly effective microwave-absorption material[J]. Nano Res,2018,11(3):1500−1519. doi: 10.1007/s12274-017-1767-0
    [11] ZHOU P P, WANG X K, WANG L X, ZHANG J, SONG Z, QIU X, YU M X, ZHANG Q T. Walnut shell-derived nanoporous carbon@Fe3O4 composites for outstanding microwave absorption performance[J]. J Alloys Compd,2019,805:1071−1080. doi: 10.1016/j.jallcom.2019.07.177
    [12] WANG L F, GUAN H T, SU S L, HU J Q, WANG Y D. Magnetic FeOx/biomass carbon composites with broadband microwave absorption properties[J]. J Alloy Compd,2022,903:163894. doi: 10.1016/j.jallcom.2022.163894
    [13] GUAN H T, WANG Q Y, WU X F, PANG J, JIANG Z Y, CHEN G, DONG C J, WANG L H, GONG C H. Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials[J]. Compos Part B,2021,207:108562. doi: 10.1016/j.compositesb.2020.108562
    [14] YANG T Z, QIAN T, WANG M F, SHEN X W, XU N, SUN Z Z, YAN C L. A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets or efficient sodium ion batteries[J]. Adv Mater,2016,28:539−545. doi: 10.1002/adma.201503221
    [15] PANG X N, YE L D, LI X J, YAN B H, ZHANG J L, YANG X. Magnetic core-shell structure insitu encapsulated in bamboo-derived carbon skeleton for efficient microwave absorption[J]. J Alloys Compd,2021,888:161510. doi: 10.1016/j.jallcom.2021.161510
    [16] GAO S T, ZHANG Y C, LI H X, HE J, XU H, WU C L. The microwave absorption properties of residual carbon from coal gasification fine slag[J]. Fuel,2021,290:120050. doi: 10.1016/j.fuel.2020.120050
    [17] GAO S T, CHEN L W, ZHANG Y C, SHAN J F. Fe nanoparticles decorated in residual carbon from coal gasification fine slag as an ultra-thin wideband microwave absorber[J]. Compos Sci Technol,2021,213:108921. doi: 10.1016/j.compscitech.2021.108921
    [18] LI G M, MAO L T, ZHU B S, CHANG X, WANG Y K, WANG G Z, ZHANG K W, TIAN Y M, LIANG L P. The novel ceramic-based microwave absorbents derived from gangue[J]. J Mater Chem C,2020,8:14238−14245. doi: 10.1039/D0TC03633A
    [19] ZHU B S, TIAN Y M, LIANG L P, WANG Y K, MAO L T, GAO F, ZHANG K W, LI G M. Two-tep preparation of fly ash-based composites for microwave absorption[J]. Int J Appl Ceram Technol,2021,18:1043−1051. doi: 10.1111/ijac.13700
    [20] GAO F, LI Y Y, MAO L T, WANG Y K, ZHU B S, LIANG L P, LI G M. Facile synthesis of Co/SC microwave absorbents by recycling coal hydrogasification residue[J]. Mater Lett,2022,308:131168. doi: 10.1016/j.matlet.2021.131168
    [21] ZHANG J Z, YAO Z Y, WANG K, WANG F, JIANG H G, LIANG M, WEI J W, AIREY G. Sustainable utilization of bauxite residue (Red Mud) as a road material in pavements: A critical review[J]. Constr Build Mater,2021,270:121419. doi: 10.1016/j.conbuildmat.2020.121419
    [22] KHAIRUL MA, ZANGANEH J, MOGHTADERI B. The composition, recycling and utilisation of Bayer red mud[J]. Resour Conserv Recycl,2019,141:483−498. doi: 10.1016/j.resconrec.2018.11.006
    [23] LIU X, HAN Y X, HE F Y, GAO P, YUAN S. Characteristic, hazard and iron recovery technology of red mud − A critical review[J]. J Hazard Mater,2021,420:126542.
    [24] SAHU M K, PATEL R K. Methods for utilization of red mud and its management[C]//Prasad M N V, Shih Kaimin. Environmental Materials and Waste. London: Elsevier Inc. , 2016, 485−524.
    [25] 叶大伦, 胡建华. 实用无机物热力学数据手册[M]. 2版. 北京: 冶金工业出版社, 2002, 1−24.

    YE Da-lun, HU Jian-hua. Data Manual for Practical Inorganic Thermodynamics[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2002, 1−24.
    [26] 薛生国, 李晓飞, 孔祥峰, 吴川, 李义伟, 李萌, 李楚璇. 赤泥碱性调控研究进展[J]. 环境科学学报,2017,37(8):2815−2828. doi: 10.13671/j.hjkxxb.2017.0144

    XUE Sheng-guo, LI Xiao-feng, KONG Xiang-feng, WU Chuan, LI Yi-wei, LI Meng, LI Chu-xuan. Alkaline regulation of bauxite residue: A comprehensive review[J]. Acta Scien Circum,2017,37(8):2815−2828. doi: 10.13671/j.hjkxxb.2017.0144
    [27] FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B,2000,61:14095. doi: 10.1103/PhysRevB.61.14095
    [28] WANG X X, ZHANG M, SHU J C, WEN B, CAO W Q, CAO M S. Thermally-tailoring dielectric “genes” in graphene-based heterostructure to manipulate electromagnetic response[J]. Carbon,2021,184:136−145. doi: 10.1016/j.carbon.2021.07.099
    [29] YAN J, HUANG Y, CHEN C, LIU X D, LIU H. The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers[J]. Carbon,2019,152:545−555. doi: 10.1016/j.carbon.2019.06.064
    [30] CAO M S, SHU J C, WEN B, WANG X X, CAO W Q. Genetic dielectric genes inside 2D carbon-based materials with tunable electromagnetic function at elevated temperature[J]. Small Struct,2021,2:2100104. doi: 10.1002/sstr.202100104
    [31] DENG Z M, LI Y, ZHANG H B, ZHANG Y, LUO J Q, LIU L X, YU Z Z. Lightweight Fe@C hollow microspheres with tunable cavity for broadband microwave absorption[J]. Composites Part B,2019,177:107346. doi: 10.1016/j.compositesb.2019.107346
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  88
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-24
  • 修回日期:  2022-09-13
  • 录用日期:  2022-09-13
  • 网络出版日期:  2022-09-26
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回