留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水热合成时间对Cu/Ce-Zr催化水气变换反应性能的影响

康玉姝 王丽宝 李永志 白金 张财顺 刘道胜 张磊 高志贤

康玉姝, 王丽宝, 李永志, 白金, 张财顺, 刘道胜, 张磊, 高志贤. 水热合成时间对Cu/Ce-Zr催化水气变换反应性能的影响[J]. 燃料化学学报(中英文), 2023, 51(6): 776-782. doi: 10.19906/j.cnki.JFCT.2022074
引用本文: 康玉姝, 王丽宝, 李永志, 白金, 张财顺, 刘道胜, 张磊, 高志贤. 水热合成时间对Cu/Ce-Zr催化水气变换反应性能的影响[J]. 燃料化学学报(中英文), 2023, 51(6): 776-782. doi: 10.19906/j.cnki.JFCT.2022074
KANG Yu-shu, WANG Li-bao, LI Yong-zhi, BAI Jin, ZHANG Cai-shun, LIU Dao-sheng, ZHANG Lei, GAO Zhi-xian. Effect of hydrothermal synthesis time on the performance of Cu/Ce-Zr catalysts for catalytic water-gas shift reaction[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 776-782. doi: 10.19906/j.cnki.JFCT.2022074
Citation: KANG Yu-shu, WANG Li-bao, LI Yong-zhi, BAI Jin, ZHANG Cai-shun, LIU Dao-sheng, ZHANG Lei, GAO Zhi-xian. Effect of hydrothermal synthesis time on the performance of Cu/Ce-Zr catalysts for catalytic water-gas shift reaction[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 776-782. doi: 10.19906/j.cnki.JFCT.2022074

水热合成时间对Cu/Ce-Zr催化水气变换反应性能的影响

doi: 10.19906/j.cnki.JFCT.2022074
基金项目: 国家自然科学基金(21673270)和辽宁省教育厅科学研究经费项目(L2019012)资助
详细信息
    通讯作者:

    E-mail: lnpuzhanglei@163.com

    gaozx@lnpu.edu.cn

  • 中图分类号: O643

Effect of hydrothermal synthesis time on the performance of Cu/Ce-Zr catalysts for catalytic water-gas shift reaction

Funds: The project was supported by the National Natural Science Foundation of China (21673270) and the Scientific Research Funds project of Education Department of Liaoning Province (L2019012)
  • 摘要: 以硝酸盐为铈、锆原料,以柠檬酸代替碱类沉淀剂,固定n(Zr∶Ce)为2∶8,采用水热法合成Ce-Zr氧化物载体,再通过浸渍法制备Cu/Ce-Zr催化剂。通过XRD、BET、H2-TPR、XPS等手段对载体和催化剂进行表征,研究水热时间对催化剂结构、性质和水气变换反应性能的影响。结果表明,催化活性主要与Cu比表面积、CuO的还原温度以及催化剂表面氧空位含量有关。其中,Cu/Ce-Zr-12催化剂的Cu比表面积较大、CuO的还原温度较低,催化剂表面的氧空位数量较多,表现出较好的催化活性。在320 ℃、水气比(WM)为2,体积空速GHSV=6600 h−1的反应条件下,CO转化率为96.9%,与热力学平衡值97.1%接近。
  • FIG. 2382.  FIG. 2382.

    FIG. 2382.  FIG. 2382.

    图  1  Ce-Zr-t载体的XRD谱图

    Figure  1  XRD patterns of Ce-Zr-t

    a:CeO2; b: Ce-Zr-6; c: Ce-Zr-9; d: Ce-Zr-12; e: Ce-Zr-15

    图  2  Cu/Ce-Zr-t催化剂的XRD谱图

    Figure  2  XRD patterns of Cu/Ce-Zr-t

    a: Cu/Ce; b: Cu/Ce-Zr-6; c:Cu/Ce-Zr-9; d: Cu/Ce-Zr-12; e: Cu/Ce-Zr-15

    图  3  Cu/Ce-Zr-t催化剂的H2-TPR谱图

    Figure  3  H2-TPR spectra of Cu/Ce-Zr-t catalysts

    a: CeO2; b: Cu/Ce-Zr-6; c: Cu/Ce-Zr-9; d: Cu/Ce-Zr-12; e: Cu/Ce-Zr-15

    图  4  Cu/Ce-Zr-t催化剂的Ce 3d XPS谱图

    Figure  4  Ce 3d XPS spectra of Cu/Ce-Zr-t catalysts

    a: Cu/Ce; b: Cu/Ce-Zr-6; c: Cu/Ce-Zr-9; d: Cu/Ce-Zr-12; e: Cu/Ce-Zr-15

    图  5  Cu/Ce-Zr-t催化剂的O 1s XPS谱图

    Figure  5  O 1s XPS spectra of Cu/Ce-Zr-t catalysts

    a: Cu/Ce; b: Cu/Ce-Zr-6; c: Cu/Ce-Zr-9; d: Cu/Ce-Zr-12; e: Cu/Ce-Zr-15

    图  6  Cu/Ce-Zr-t催化剂的Cu 2p XPS谱图

    Figure  6  Cu 2p XPS spectra of Cu/Ce-Zr-t catalysts

    a: Cu/Ce; b: Cu/Ce-Zr-6; c: Cu/Ce-Zr-9; d: Cu/Ce-Zr-12; e: Cu/Ce-Zr-15

    图  7  Cu/Ce-Zr-t催化剂的Cu LMM XPS谱图

    Figure  7  Cu LMM XPS spectra of Cu/Ce-Zr-t catalysts

    a: Cu/Ce; b: Cu/Ce-Zr-6; c: Cu/Ce-Zr-9; d: Cu/Ce-Zr-12; e: Cu/Ce-Zr-15

    图  8  Cu/Ce-Zr-t催化剂的Zr 3d XPS谱图

    Figure  8  Zr 3d XPS spectra of Cu/Ce-Zr-t catalysts

    a: Cu/Ce-Zr-6; b: Cu/Ce-Zr-9; c: Cu/Ce-Zr-12; d: Cu/Ce-Zr-15

    图  9  反应温度对催化活性的影响

    Figure  9  Effect of reaction temperature on catalytic activity (reaction conditions: GHSV=6600 h−1, n(H2O)/n(CO)=2∶1, no carrier gas)

    a: Cu/Ce; b: Cu/Ce-Zr-6; c: Cu/Ce-Zr-9; d: Cu/Ce-Zr-12; e: Cu/Ce-Zr-15; f: thermodynamic equilibrium

    表  1  Ce-Zr-t和Cu/Ce-Zr-t的物化性质

    Table  1  Physical and chemical properties of Ce-Zr-t and Cu/Ce-Zr-t

    CatalystCell parameters /nmSBET
    /(m2·g−1)
    Pore volume /(mL·g−1)Cu surface areaa /(m2·g−1)
    CeO20.5407523.90.08
    Ce-Zr-60.5388171.50.13
    Ce-Zr-90.5401776.80.14
    Ce-Zr-120.5387569.20.15
    Ce-Zr-150.5402661.80.10
    Cu/Ce0.5407321.20.071.5
    Cu/Ce-Zr-60.5387156.90.113.7
    Cu/Ce-Zr-90.5394460.60.124.9
    Cu/Ce-Zr-120.5373258.80.145.5
    Cu/Ce-Zr-150.5392650.20.093.5
    a: determined by N2O experiments
    下载: 导出CSV

    表  2  CuO还原峰位置

    Table  2  Reduction peak positions of CuO

    CatalystPeak position t/℃
    peak αpeak β
    Cu/Ce-Zr-6156182
    Cu/Ce-Zr-9155181
    Cu/Ce-Zr-12144171
    Cu/Ce-Zr-15157189
    下载: 导出CSV

    表  3  催化剂Ce 3d和O 1s的XPS曲线拟合

    Table  3  XPS curve fitting results of catalysts Ce 3d and O 1s

    CatalystCe3+/(Ce3+ + Ce4+)/%Oads/(Olat + Oads)/%
    Cu/Ce24.228.2
    Cu/Ce-Zr-621.926.7
    Cu/Ce-Zr-924.428.7
    Cu/Ce-Zr-1228.631.1
    Cu/Ce-Zr-1518.324.5
    下载: 导出CSV
  • [1] LEVALLEY T L, RICHARD A R, FAN M. The progress in water gas shift and steam reforming hydrogen production technologies-A review[J]. Int J Hydrog Energy,2014,39(30):16983−17000. doi: 10.1016/j.ijhydene.2014.08.041
    [2] RATNASAMY C, WAGNER J P. Water gas shift catalysis[J]. Catal Rev Sci Eng,2009,51(3):325−440. doi: 10.1080/01614940903048661
    [3] YAO S Y, ZHANG X, ZHOU W, GAO R, XU W Q. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction[J]. Science,2017,357(6349):389−393. doi: 10.1126/science.aah4321
    [4] KARPENKO A, LEPPELT R, CAI J, PLZAK V, CHUVULIN A, KAISER U, BEHM R. J. Deactivation of a Au/CeO2 catalyst during the low-temperature water-gas shift reaction and its reactivation: A combined TEM, XRD, XPS, DRIFTS, and activity study[J]. J Catal,2007,250(1):139−150. doi: 10.1016/j.jcat.2007.05.016
    [5] JEONG D W, POTDAR H S, SHIM J O, JANG W J, ROH H S. H2 production from a single stage water- gas shift reaction over Pt/CeO2, Pt/ZrO2, and Pt/Ce(1−x)Zr(x)O2 catalysts[J]. Int J Hydrog Energy,2013,38(11):4502−4507. doi: 10.1016/j.ijhydene.2013.01.200
    [6] LEE J Y, LEE D W, LEE K Y, WANG Y. Cr-free Fe-based metal oxide catalysts for high temperature water gas shift reaction of fuel processor using LPG[J]. Catal Today,2009,146(1/2):260−264. doi: 10.1016/j.cattod.2009.01.041
    [7] LEE Y L, JHA A, JANG W J, SHIM J O, JEON K W, NA H S, KIM H M, LEE D W. Optimization of Cobalt Loading in Co-CeO2 Catalyst for the High Temperature Water-Gas Shift Reaction[J]. Top Catal,2017,60:721−726. doi: 10.1007/s11244-017-0776-2
    [8] PAWEL K, MARCIN K, KATARZYNA A, WIESLAW P, PAWEL W. The effect of the precursor ageing on properties of the Cu/ZnO/Al2O3 catalyst for low temperature water-gas shift (LT-WGS)[J]. Mol Catal,2014,392(7):127−133.
    [9] REINA T R, IVANOVA S, CENTENO M A, ODRIOZOLA J A. The role of Au, Cu & CeO2 and their interactions for an enhanced WGS performance[J]. Appl Catal B: Environ,2016,187:98−107. doi: 10.1016/j.apcatb.2016.01.031
    [10] 王润平, 毛树红, 段秀琴, 李文斌, 王齐, 池永庆. 不同载体Ni基负载型催化剂对甲烷部分氧化制合成气催化行为研究[J]. 燃料化学学报,2015,43(2):228−243. doi: 10.3969/j.issn.0253-2409.2015.02.014

    WANG Run-ping, MAO Shu-hong, DUAN Xiu-qin, LI Wen-bin, WANG Qi, CHI Yong-qing. Catalytic performance of nickel-based catalysts with different supports in partial oxidation of methane to synthesis gas[J]. J Fuel Chem Technol,2015,43(2):228−243. doi: 10.3969/j.issn.0253-2409.2015.02.014
    [11] 王东哲, 冯旭, 张健, 陈琳, 张磊, 王宏浩, 白金, 张财顺, 张政一. 助剂M(M=Cr、Zn、Y、La)对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J]. 燃料化学学报,2019,47(10):1251−1257. doi: 10.3969/j.issn.0253-2409.2019.10.012

    WANG Dong-zhe, FENG Xu, ZHANG Jian, CHEN Lin, ZHANG Lei, WANG Hong-hao, BAI Jin, ZHANG Cai-shun, ZHANG Zheng-yi. Effect of promoter M(M=Cr, Zn, Y, La) on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol[J]. J Fuel Chem Technol,2019,47(10):1251−1257. doi: 10.3969/j.issn.0253-2409.2019.10.012
    [12] ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrog Energy,2013,38:4397−4406. doi: 10.1016/j.ijhydene.2013.01.053
    [13] JEONG D W, NA H S, SHIM J O, JANG W J, ROH H S. A crucial role for the CeO2-ZrO2 support for the low temperature water gas shift reaction over Cu-CeO2-ZrO2 catalysts[J]. Catal Sci Technol,2015,5:3706−3713. doi: 10.1039/C5CY00499C
    [14] SHI L M, GAO C L, GUO F H, WANG Y J, ZHANG T B. Catalytic performance of Zr-doped CuO-CeO2 oxides for CO selective oxidation in H2-rich stream[J]. J Rare Earths,2019,37:720−725. doi: 10.1016/j.jre.2019.01.003
    [15] GUO X L, ZHOU R X. Identification of the nano/micro structure of CeO2 (rod) and the essential role of interfacial copper-ceria interaction in CuCe(rod) for selective oxidation of CO in H2-rich streams[J]. J. Power Sources,2017,361(sep.1):39−53.
    [16] 刘玉娟, 许骥, 佟宇飞, 张娜, 张磊, 刘道胜, 韩蛟, 张财顺. 氧化铈纳米材料合成方法的研究进展[J]. 辽宁石油化工大学学报,2017,37(5):8−12 + 37. doi: 10.3969/j.issn.1672-6952.2017.05.002

    LIU Yu-juan, XU Ji, TONG Yu-fei, ZHANG Na, ZHANG Lei, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Progress in research of the synthesis methods of nanometer ceria[J]. J Liaoning Petrochem Univ,2017,37(5):8−12 + 37. doi: 10.3969/j.issn.1672-6952.2017.05.002
    [17] 王丽宝, 王宏浩, 张磊, 庆绍军, 刘冬梅, 高志贤, 张海娟, 官国清. 柠檬酸量对水热合成CuO/Ce0.8Zr0.2O2催化水气变换制氢性能的影响[J]. 燃料化学学报,2022,50(3):337−345.

    WANG Li-bao, WANG Hong-hao, ZHANG Lei, QING Shao-jun, LIU Dong-mei, GAO Zhi-xian, ZHANG Hai-juan, GUAN Guo-qing. Effect of citric acid content on the hydrothermal synthesis of CuO/Ce0.8Zr0.2O2 catalytic water gas shift hydrogen production performance[J]. J Fuel Chem Technol,2022,50(3):337−345.
    [18] 焦桐, 许雪莲, 张磊, 翁幼云, 翁玉冰, 高志贤. CuO/CeO2-ZrO2/SiC整体催化剂催化甲醇水蒸气重整制氢的研究[J]. 化学学报,2021,79(4):513−519. doi: 10.6023/A20120562

    JIAO Tong, XU Xue-lian, ZHANG Lei, WENG You-yun, WENG Yu-bing, GAO Zhi-xian. Research on CuO/CeO2-ZrO2/SiC monolithic catalysts for hydrogen production by methanol steam reforming[J]. Acta Chim Sin,2021,79(4):513−519. doi: 10.6023/A20120562
    [19] 贺建平, 张磊, 陈琳, 杨占旭, 佟宇飞. CeO2改性Cu/Zn-Al水滑石衍生催化剂对甲醇水蒸气重整制氢性能的影响[J]. 高等学校化学学报,2017,38(10):1822−1828. doi: 10.7503/cjcu20170158

    HE Jian-ping, ZHANG Lei, CHEN Lin, YANG Zhan-xu, TONG Yu-fei. Effect of CeO2 on Cu/Zn-Al catalysts derived from hydrotalcite precursor for methanol steam reforming[J]. Chem J Chin Univ,2017,38(10):1822−1828. doi: 10.7503/cjcu20170158
    [20] 张宣娇, 孙羽, 刘明, 郝书敏, 杨涛, 张磊, 白金, 韩蛟. CeO2形貌结构对催化湿式空气氧化苯酚性能的影响[J]. 中国环境科学,2020,40(10):4330−4334. doi: 10.3969/j.issn.1000-6923.2020.10.016

    ZHANG Xuan-jiao, SUN Yu, LIU Ming, HAO Shu-min, YANG Tao, ZHANG Lei, BAI Jin, HAN Jiao. Effect of morphology on the performance of CeO2 for catalytic wet air oxidation of phenol[J]. Chin Environ Sci,2020,40(10):4330−4334. doi: 10.3969/j.issn.1000-6923.2020.10.016
    [21] 肖国鹏, 乔韦军, 张磊, 庆绍军, 张财顺, 高志贤. 钙钛矿型甲醇水蒸气重整制氢催化材料的研究[J]. 化学学报,2021,79(1):100−107. doi: 10.6023/A20080374

    XIAO Guo-peng, QIAO Wei-jun, ZHANG Lei, QING Shao-jun, ZHANG Cai-shun, GAO Zhi-xian. Study on hydrogen production catalytic materials for perovskite methanol steam reforming[J]. Acta Chim Sin,2021,79(1):100−107. doi: 10.6023/A20080374
    [22] YANG S Q, ZHOU F, LIU Y J, ZHANG L, CHEN Y, WANG H H, TIAN Y, ZHANG C S, LIU D S. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming[J]. Int J Hydrog Energy,2019,44(14):7252−7261. doi: 10.1016/j.ijhydene.2019.01.254
    [23] YANG K, LIU J F, SI R R, CHEN X, DAI W X, FU X Z. Comparative study of Au/TiO2 and Au/Al2O3 for oxidizing CO in the presence of H2 under visible light irradiation[J]. J Catal,2014,317:229−239. doi: 10.1016/j.jcat.2014.06.005
    [24] BIESINGER M C. Advanced analysis of copper X-ray photoelectron spectra[J]. Surf Interface Anal,2017,49:1325−1334. doi: 10.1002/sia.6239
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  494
  • HTML全文浏览量:  119
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-10
  • 修回日期:  2022-09-10
  • 录用日期:  2022-09-20
  • 网络出版日期:  2022-09-26
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回