留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pd-Cu催化剂上吸附O强化甲烷活化机理研究

张佳栋 牛俊天 刘海玉 樊保国 金燕

张佳栋, 牛俊天, 刘海玉, 樊保国, 金燕. Pd-Cu催化剂上吸附O强化甲烷活化机理研究[J]. 燃料化学学报(中英文), 2023, 51(7): 987-995. doi: 10.19906/j.cnki.JFCT.2022091
引用本文: 张佳栋, 牛俊天, 刘海玉, 樊保国, 金燕. Pd-Cu催化剂上吸附O强化甲烷活化机理研究[J]. 燃料化学学报(中英文), 2023, 51(7): 987-995. doi: 10.19906/j.cnki.JFCT.2022091
ZHANG Jia-dong, NIU Jun-tian, LIU Hai-yu, FAN Bao-guo, JIN Yan. Study on the activation mechanism of O-enhanced methane adsorbed on Pd-Cu catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 987-995. doi: 10.19906/j.cnki.JFCT.2022091
Citation: ZHANG Jia-dong, NIU Jun-tian, LIU Hai-yu, FAN Bao-guo, JIN Yan. Study on the activation mechanism of O-enhanced methane adsorbed on Pd-Cu catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 987-995. doi: 10.19906/j.cnki.JFCT.2022091

Pd-Cu催化剂上吸附O强化甲烷活化机理研究

doi: 10.19906/j.cnki.JFCT.2022091
基金项目: 国家自然科学基金青年项目(52106179)资助
详细信息
    通讯作者:

    E-mail: jinyan@tyut.edu.cn

  • 中图分类号: TQ426; X701

Study on the activation mechanism of O-enhanced methane adsorbed on Pd-Cu catalyst

Funds: The project was supported by the National Natural Science Foundation of China (52106179)
  • 摘要: 甲烷催化燃烧相比较传统燃烧有燃烧温度低,清洁以及高效的优点,在天然气汽车、固体氧化物燃料电池等多个领域具有较好的应用前景。为了揭示甲烷在不同掺杂比的Pd-Cu团簇上的脱氢机理,本研究采用密度泛函理论(DFT)对CH4*在不同团簇上的直接脱氢和O辅助脱氢进行计算。计算结果表明,Pd原子的掺杂提高了Cu(111)表面的吸附能力,在直接脱氢过程中,Pd的掺杂不仅使能垒由2.56 eV降低到2.43 eV,而且使速率控制步骤由CH*+*→C* + H*变为CH4*+*→CH3* + H*。预吸附O能够显著降低甲烷脱氢的能垒,速率控制步骤均为CH4* + O*→CH3* + OH*,甲烷在团簇上O辅助脱氢的最高能垒的大小为Cu(111)(1.56 eV)>Pd6Cu(111)(1.44 eV)>Pd2Cu(111)(1.38 eV),Pd的添加对于直接脱氢和O辅助脱氢的性能都有所提升。
  • FIG. 2472.  FIG. 2472.

    FIG. 2472.  FIG. 2472.

    图  1  三种催化剂模型的俯视图和侧视图

    Figure  1  Top view and side view of three catalyst models (Cu and Pd atom are shown as red and blue ball)

    图  2  CHx*(x=0–4)在催化剂表面的吸附构型

    Figure  2  Adsorption configuration of CHx*(x=0–4) over catalysts surface (C and H atom are shown as grey and white ball)

    图  3  甲烷在三个催化剂表面直接脱氢的过渡态构型

    Figure  3  Transition state configuration of direct dehydrogenation of methane over the surface of three catalysts

    图  4  O辅助甲烷脱氢在三种催化剂表面的过渡态构型

    Figure  4  Transition state configuration of O-assisted methane dehydrogenation over the three catalyst surfaces (C, H and O atom are shown as grey, white and red ball)

    图  5  甲烷直接脱氢以及O辅助脱氢的能量曲线

    Figure  5  Energy landscape of methane direct dehydrogenation and O-assisted dehydrogenation (a): Cu(111); (b): Pd2Cu(111); (c): Pd6Cu(111)

    图  6  O辅助脱氢在Cu(111)、Pd2Cu(111)及Pd6Cu(111)催化剂上的能垒

    Figure  6  Energy barrier of O-assisted dehydrogenation on Cu(111), Pd2Cu(111) and Pd6Cu(111) clusters

    图  7  Cu(111)、Pd2Cu(111)和Pd6Cu(111)的d带态密度(DOS)

    Figure  7  d-band density of states for Cu(111), Pd2Cu(111) and Pd6Cu(111) (red vertical lines represent the central position of the d-state PDOS, the blue lines represent the Fermi level EF)

    表  1  CHx*(x=0–4)在三种催化剂表面的吸附位点和吸附能(eV)

    Table  1  Adsorption sites and adsorption energy (eV) of CHx*(x=0–4) over the surface of three catalysts

    SpeciesCu(111) Pd2Cu(111) Pd6Cu(111)
    siteenergysiteenergysiteenergy
    CH4*top−0.02 top−0.03 top−0.02
    CH3*hollow−0.98top−1.41top−1.12
    CH2*bridge−2.79hollow−3.13hollow−2.93
    CH*hollow−4.08hollow−4.65hollow−4.51
    C*hollow−4.54hollow−5.11hollow−5.17
    下载: 导出CSV

    表  2  甲烷在三种催化剂上直接脱氢的能垒和反应热(eV)

    Table  2  Energy barrier and heat of methane direct dehydrogenation on three catalysts (eV)

    Elementary stepCu(111) Pd2Cu(111) Pd6Cu(111)
    barrierheatbarrierheatbarrierheat
    CH4*+*→CH3* + H*1.801.40 2.431.19 2.431.46
    CH3*+*→CH2* + H*2.071.531.771.152.001.31
    CH2*+*→CH* + H*1.881.241.670.881.820.94
    CH*+*→C* + H*2.561.881.981.152.271.37
    下载: 导出CSV

    表  3  O辅助甲烷脱氢在三种催化剂表面上的能垒和反应热(eV)

    Table  3  Energy barrier and heat of reaction of O-assisted methane dehydrogenation over three catalyst surfaces (eV)

    Elementary stepCu(111)Pd2Cu(111)Pd6Cu(111)
    barrierheatbarrierheatbarrierheat
    CH4* + O* → CH3* + OH* 1.56 0.45 1.38 0.25 1.44 0.32
    CH3* + O*→ CH2* + OH* 0.64 −0.79 0.66 −0.09 0.80 −0.18
    CH2* + O*→ CH* + OH* 0.71 −0.41 0.44 −0.13 0.66 −0.27
    CH* + O*→ C* + OH* 0.83 −0.26 0.90 0.24 1.02 −0.09
    下载: 导出CSV
  • [1] 天工. 《中国天然气发展报告(2021)》发布[J]. 天然气工业,2021,41(8):68.

    TIAN Gong. China Natural Gas Development Report (2021) released[J]. NGI,2021,41(8):68.
    [2] DAVID A. Attributing atmospheric methane to anthropogenic emission sources[J]. Acc Chem Res,2016,49(7):1344−1350. doi: 10.1021/acs.accounts.6b00081
    [3] REAY D S, SMITH P, CHRISTENSEN T R, JAMES R H, CLARK H. Methane and global environmental change[J]. Annu Rev Env Resour,2018,43(1):165−92. doi: 10.1146/annurev-environ-102017-030154
    [4] 楚培齐, 王赛飞, 赵世广, 张依, 邓积光, 刘雨溪, 郭萌, 段二红. 甲烷催化燃烧反应机理及催化剂研究进展[J]. 燃料化学学报,2022,50(2):180−191. doi: 10.19906/j.cnki.jfct.2021077

    CHU Pei-qi, WANG Sai-fei, ZHAO Shi-guang, ZHANG Yi, DENG Ji-guang, LIU Yu-xi, GUO Meng, DUAN Er-hong. Research progress of reaction mechanism and catalysts on catalytic methane combustion[J]. J Fuel Chem Technol,2022,50(2):180−191. doi: 10.19906/j.cnki.jfct.2021077
    [5] HOU M L, ZHANG X, FU C, CEN W L, CHEN J X. Effects of Pd/Pt bimetal supported by γ-Al2O3 surface on methane activation[J]. Phys Chem Chem Phys,2020,22(8):1−21.
    [6] DIANAT A, SERIANI N, CIACCHI L C, BOBETH M, CUNIBERTI G. DFT study of reaction processes of methane combustion on PdO(100)[J]. Chem Phys,2014,443:53−60. doi: 10.1016/j.chemphys.2014.08.006
    [7] JØRGENSEN M, GRÖNBECK H. First-principles microkinetic modeling of methane oxidation over Pd(100) and Pd(111)[J]. ACS Catal,2016,6(10):6730−6738. doi: 10.1021/acscatal.6b01752
    [8] 齐大彬, 罗旭东, 姚君, 姚玉龙, 芦晓军. CO在Pd平板与Pd38团簇表面上的催化氧化机理研究[J]. 燃料化学学报,2020,48(4):432−439. doi: 10.1016/S1872-5813(20)30017-7

    QI Da-bin, LUO Xu-dong, YAO Jun, YAO Yu-long, LU Xiao-jun. Catalytic oxidation of CO on Pd38 cluster and Pd slab, a computational study[J]. J Fuel Chem Technol,2020,48(4):432−439. doi: 10.1016/S1872-5813(20)30017-7
    [9] CHEN L X, MCCANN J P, TAIT S L. A re-examination of the catalyst activation and temperature hysteresis in methane combustion on Pt/Al2O3[J]. Appl Catat A: Gen,2018,549:19−30. doi: 10.1016/j.apcata.2017.09.008
    [10] ZHAO C C, ZHAO Y H, LI S G, SUN Y H. Effect of Pd doping on CH4 reactivity over Co3O4 catalysts from density-functional theory calculations[J]. Chin J Catal,2017,38(5):813−820. doi: 10.1016/S1872-2067(17)62817-1
    [11] LIU W G, GUO D Y, XU X. Research progress of palladium catalysts for methane combustion[J]. China Pet Process,2012,14(3):1−9.
    [12] SOLYMOSI F, ERDOHELYI A, CSERENYI J. Decemposition of CH4 over supported Pd catalysts[J]. J Catal,1994,147(1):272−278. doi: 10.1006/jcat.1994.1138
    [13] QI W J, RAN J Y, WANG R R, DU X S, SHI J, RAN M C. Kinetic mechanism of effects of hydrogen addition on methane catalytic combustion over Pt(111) surface: A DFT study with cluster modeling[J]. Comput Mater Sci,2016,111:430−442. doi: 10.1016/j.commatsci.2015.09.002
    [14] CHEN Y, VLACHOS D G. Density functional theory study of methane oxidation and reforming on Pt(111) and Pt(211)[J]. Ind Eng Chem Res,2012,51(38):12244−12252.
    [15] LIU H Y, ZHANG R G, YAN R X, WANG B J, XIE K C. CH4 dissociation on NiCo(111) surface: A first-principles study[J]. Appl Surf Sci,2011,257(21):8955−8964. doi: 10.1016/j.apsusc.2011.05.073
    [16] HE J, YANG Z Q, DING C L, ZHANG L, YAN Y F, DU X S. Methane dehydrogenation and oxidation process over Ni-based bimetallic catalysts[J]. Fuel,2018,226:400−409. doi: 10.1016/j.fuel.2018.04.031
    [17] NIU J T, WANG Y L, LILAND S E, SAMUEL K R, YANG J, ROUT K R, LUO J, RØNNING M, RAN J Y, CHEN D. Unraveling enhanced activity, selectivity, and coke-resistance of Pt-Ni bimetallic clusters in dry reforming[J]. ACS Catal,2021,11(4):2398−2411. doi: 10.1021/acscatal.0c04429
    [18] NIU J T, LIU H Y, JIN Y, FAN B G, QI W J, RAN J Y. A density functional theory study of methane activation on MgO supported Ni9M1 cluster: Role of M on C–H activation[J]. Front Chem Sci Eng,2022,16(10):1485−1492. doi: 10.1007/s11705-022-2169-8
    [19] JIANG Z, WU Z Q, FANG T, YI C H. Enhancement C–H bond activation of methane via doping Pd, Pt, Rh and Ni on Cu(111) surface: A DFT study[J]. Chem Phys Lett,2019,715:323−329. doi: 10.1016/j.cplett.2018.12.001
    [20] MENG Y Y, DING C M, GAO X F, MA L C, ZHANG K, WANG J W, LI Z. Adsorption of Pd on the Cu(111) surface and its catalysis of methane partial oxidation: A density functional theory study[J]. Appl Surf Sci,2020,513:145724. doi: 10.1016/j.apsusc.2020.145724
    [21] WANG J, WANG G C. Promotion effect of methane activation on Cu(111) by the surface-active oxygen species: A combination of DFT and ReaxFF study[J]. J Phys Chem C,2018,122(30):17338−17346. doi: 10.1021/acs.jpcc.8b05294
    [22] 钱梦丹, 薛继龙, 夏盛杰, 倪哲明, 蒋军辉, 曹勇勇. Pd/Cu(111)双金属表面催化糠醛脱碳及加氢的反应机理[J]. 燃料化学学报,2017,45(1):34−42. doi: 10.1016/S1872-5813(17)30008-7

    QIAN Meng-dan, XUE Ji-long, XIA Sheng-ji, NI Zhe-ming, JIANG Jun-hui, CAO Yong-yong. Decarbonylation and hydrogenation reaction of furfural on Pd/Cu(111) surface[J]. J Fuel Chem Technol,2017,45(1):34−42. doi: 10.1016/S1872-5813(17)30008-7
    [23] 康建东. 铜基催化剂氧化低浓度甲烷的反应动力学及性能调控[D]. 重庆: 重庆大学, 2020.

    KANG Jian-dong. Reaction kinetics and performance regulation of copper-based catalysts for oxidation of low-concentration methane[D]. Chongqing, Chongqing University, 2020.
    [24] GONZALEZ C, SCHLEGEL H B. An improved algorithm for reaction path following[J]. J Chem Phys,1989,90(4):2154. doi: 10.1063/1.456010
    [25] BU X X, RAN J Y, NIU J T, OU Z L, TANG L, HUANG X. Reaction mechanism insights into CH4 catalytic oxidation on Pt13 cluster: A DFT study[J]. Mol Catal,2021,515:111891. doi: 10.1016/j.mcat.2021.111891
    [26] HAMMER B, NØRSKOV J K. Theoretical surface science and catalysis-calculations and concepts[J]. Adv Catal,2000,(45):1−71.
    [27] LU T, CHEN F W. Multiwfn: A multifunctional wavefunction analyzer[J]. J Comput Chem,2012,(33):580−592.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  91
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-11
  • 修回日期:  2022-11-30
  • 录用日期:  2022-12-05
  • 网络出版日期:  2022-12-26
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回