留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rh/g-C3N4纳米催化剂催化水合肼分解制氢性能研究

邱小魁 孙佳丽 花俊峰 郑君宁 万超 许立信

邱小魁, 孙佳丽, 花俊峰, 郑君宁, 万超, 许立信. Rh/g-C3N4纳米催化剂催化水合肼分解制氢性能研究[J]. 燃料化学学报(中英文), 2023, 51(9): 1313-1320. doi: 10.19906/j.cnki.JFCT.2022093
引用本文: 邱小魁, 孙佳丽, 花俊峰, 郑君宁, 万超, 许立信. Rh/g-C3N4纳米催化剂催化水合肼分解制氢性能研究[J]. 燃料化学学报(中英文), 2023, 51(9): 1313-1320. doi: 10.19906/j.cnki.JFCT.2022093
QIU Xiao-kui, SUN Jia-li, HUA Jun-feng, ZHENG Jun-ning, WAN Chao, XU Li-xin. Hydrogen generation from hydrous hydrazine over Rh/g-C3N4 nanocatalysts[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1313-1320. doi: 10.19906/j.cnki.JFCT.2022093
Citation: QIU Xiao-kui, SUN Jia-li, HUA Jun-feng, ZHENG Jun-ning, WAN Chao, XU Li-xin. Hydrogen generation from hydrous hydrazine over Rh/g-C3N4 nanocatalysts[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1313-1320. doi: 10.19906/j.cnki.JFCT.2022093

Rh/g-C3N4纳米催化剂催化水合肼分解制氢性能研究

doi: 10.19906/j.cnki.JFCT.2022093
基金项目: 国家自然科学基金青年基金(22108238, U22A20408),安徽省自然科学基金青年基金(1908085QB68),安徽省科技重大专项(201903a05020055),中国博士后面上项目(2019M662060)和特别资助站中项目(2020T130580, PC2022046)资助
详细信息
    通讯作者:

    E-mail: lxxu@hotmail.com

  • 中图分类号: O643.36

Hydrogen generation from hydrous hydrazine over Rh/g-C3N4 nanocatalysts

Funds: The project was supported by the National Natural Science Foundation of China (22108238, U22A20408), Anhui Provincial Natural Science Foundation (1908085QB68), Major Science and Technology Project of Anhui Province (201903a05020055) and China Postdoctoral Science Foundation (2019M662060, 2020T130580,PC2022046)
  • 摘要: 本研究将三聚氰胺在静态空气中焙烧合成的g-C3N4作为载体,通过简单的浸渍还原法将Rh纳米粒子负载在g-C3N4载体上制备出Rh/g-C3N4催化剂。采用多种表征方法对催化剂的微观结构、组成成分进行研究。此外,还研究了反应温度和NaOH浓度对催化剂催化水合肼分解的影响。研究结果表明,催化剂优异的催化活性源于g-C3N4载体为金属Rh提供了锚定位点,并且载体和金属之间存在强相互作用。催化剂的催化活性随着反应温度的升高而不断提升,当NaOH浓度为0.75 mol/L时Rh/g-C3N4催化剂具有最高的催化活性。Rh/g-C3N4催化剂催化水合肼分解制氢的活化能为30.7 kJ/mol,TOF值为1466.4 h−1,在经过五次循环后,催化剂依旧保持着较好的催化活性,表明催化剂具有良好的循环稳定性。
  • FIG. 2675.  FIG. 2675.

    FIG. 2675.  FIG. 2675.

    图  1  Rh/g-C3N4合成示意图

    Figure  1  Synthetic schematic illustration of Rh/g-C3N4

    图  2  不同放大倍数下Rh/g-C3N4催化剂的TEM照片

    Figure  2  TEM images of Rh/g-C3N4 with different magnification

    图  3  Rh/g-C3N4催化剂的XRD谱图

    Figure  3  X-ray diffraction (XRD) patterns of Rh/g-C3N4

    图  4  (a) Rh/g-C3N4的XPS测试全谱图,(b) Rh/g-C3N4的Rh 3d区域XPS谱图,Rh/g-C3N4和g-C3N4的 (c) C 1s区域,(d) N 1s区域XPS谱图

    Figure  4  XPS spectra of Rh/g-C3N4 sample (a) Full XPS spectrum and (b) Rh 3d, (c) the XPS of C 1s regions and (d) N 1s regions of Rh/g-C3N4 and g-C3N4

    图  5  (a) 343 K下Rh/g-C3N4在不同浓度的碱溶液中催化水合肼分解产生的气体;(b) 343 K下不同NaOH浓度反应对应的TOF值;(c) 不同温度下Rh/g-C3N4上水合肼分解生成气体与时间的关系;(d) Rh/g-C3N4催化剂催化水合肼分解阿伦尼乌斯曲线

    Figure  5  (a) Plots equivalent produced by dehydrogenation of hydrous hydrazine catalyzed by Rh/g-C3N4 in alkaline solutions with different concentrations at 343 K; (b) TOF values corresponding to different NaOH concentration reactions at 343 K; (c) Relationship between volume and time of gas generated by hydrous hydrazine dehydrogenation at Rh/g-C3N4 at different temperatures; (d) Arrhenius diagram of dehydrogenation of hydrous hydrazine catalyzed by Rh/g-C3N4 catalyst

    图  6  Rh/g-C3N4催化水合肼分解产氢循前后的XRD谱图

    Figure  6  X-ray diffraction (XRD) patterns of Rh/g-C3N4 befor and after reaction

    图  7  Rh/g-C3N4在343 K下催化水合肼产氢循环测试

    Figure  7  Recycling performance of Rh/g-C3N4 at 343 K

    表  1  Rh/g-C3N4催化剂的ICP-AES测试

    Table  1  ICP-AES results of Rh/g-C3N4 catalyst

    CatalystRh w/%Final metals/catalyst
    (mmol·(100 mg)−1)
    Rh/g-C3N412.370.137
    下载: 导出CSV

    表  2  不同催化剂在水合肼产氢中的性能

    Table  2  Comparison performance of different catalysts for dehydrogenation of hydrous hydrazine

    CatalystT/KTOF/ h−1Ea/ (kJ·mol−1)Ref.
    Rh/g-C3N43231466.430.7This work
    Rh55Ni45/Ce(OH)CO332339538.8[19]
    Rh4Ni1@RGO29820.1[24]
    Rh4Ni2986[33]
    Ni0.90Pt0.05Rh0.05/La2O329866.7[34]
    Ni66Rh34@ZIF-832314058.1[35]
    Rh47Ni18P35@MOF-74323715.449.39[21]
    Ni37Pt63/g-C3N432357036.6[29]
    Ni0.4Pt0.6/CNTs3231725.336.3[36]
    Pt0.6Ni0.4/(MnOx)2-C3N4323274948.7[37]
    下载: 导出CSV
  • [1] WAN C, SUN L, XU L, CHENG D G, CHEN F, ZHAN X, YANG Y. Novel NiPt alloy nanoparticle decorated 2D layered g-C3N4 nanosheets: a highly efficient catalyst for hydrogen generation from hydrous hydrazine[J]. J Mater Chem A,2019,7(15):8798−8804. doi: 10.1039/C9TA01535C
    [2] LIU M M, ZHOU L, WAN C, YE M F, XU L X. Achieving com-plete hydrogen evolution from N2H4BH3 over mesoporous TiO2 immobilized NiPt alloy nanoparticles[J]. ChemistrySelect,2021,6(34):9185−9190. doi: 10.1002/slct.202102592
    [3] AKBAYRAK S, TONBUL Y, ÖZKAR S. Magnetically separable Rh0/Co3O4 nanocatalyst provides over a million turnovers in hydrogen release from ammonia borane[J]. ACS Sustainable Chem Eng,2020,8(10):4216. doi: 10.1021/acssuschemeng.9b07402
    [4] WAN C, ZHOU L, SUN L, XU L X, CHENG D G, CHEN F Q, ZHAN X L, YANG Y R. Boosting visible-light-driven hydrogen evolution from formic acid over AgPd/2D g-C3N4 nanosheets Mott-Schottky photocatalyst[J]. Chem Eng J,2020,396:125229. doi: 10.1016/j.cej.2020.125229
    [5] SEMIZ L. Hydrogen generation from ammonia borane by polymer supported platinum films[J]. Chem Phys Lett,2021,767:138365. doi: 10.1016/j.cplett.2021.138365
    [6] DU X, CAI P, LUO W, CHENG G Z. Facile synthesis of P-doped Rh nanoparticles with superior catalytic activity toward dehydrogenation of hydrous hydrazine[J]. Int J Hydrogen Energy,2017,42(9):6137−6143. doi: 10.1016/j.ijhydene.2016.12.049
    [7] 任壮禾, 张欣, 高明霞, 潘洪革, 刘永锋. Ti基催化剂改性的NaAlH4储氢材料研究进展[J]. 稀有金属,2021,45(5):569.

    REN Zhuang-he, ZHANG Xin, GAO Ming-xia, PAN Hong-ge, LIU Yong-feng. Research progress in Ti-based catalysts-modified NaAlH4 hydrogen storage materials[J]. Chin J Rare Met,2021,45(5):569.
    [8] 路金林, 王琳, 李继东, 王一雍, 李胜利, 崔小强. 电沉积法制备钯金纳米催化剂及其对甲醇催化性能的研究[J]. 稀有金属,2015,39(6):493. doi: 10.13373/j.cnki.cjrm.2015.06.003

    LU Jin-lin, WANG Lin, LI Ji-dong, WANG Yi-yong, LI Sheng-li, CUI Xiao-qiang. Pd-Au nano-catalysts synthesized by electrodeposition and its cata-lytic performance for methanol[J]. Chin J Rare Met,2015,39(6):493. doi: 10.13373/j.cnki.cjrm.2015.06.003
    [9] 任杨斌, 范燕平, 刘宪云, 段继转, 刘宝忠. 氨硼烷水解制氢贵金属催化剂研究进展[J]. 当代化工研究,2022,3:1. doi: 10.3969/j.issn.1672-8114.2022.05.001

    REN Yang-bin, FAN Yan-ping, LIU Xian-yun, DUAN Ji-zhuan, LIU Bao-zhong. Research progress of hydrolytic noble metal catalyst for hydrogen production from ammonia borane[J]. Mod Chem Res,2022,3:1. doi: 10.3969/j.issn.1672-8114.2022.05.001
    [10] WANG Y, SHEN J L, HUANG Y, LIU X, ZHAO Q X, ASTRUC D. Acid‐and base‐catalyzed hydrolytic hydrogen evolution from diboronic acid[J]. Eur J Inorg Chem,2021,29:3013−3018.
    [11] LIU X Y, LIU Y, WANG J C, MA J. Anatase-type TiO2-modified amorphous NiMo nanoparticles with superior catalytic performance toward dehydrogenation of hydrous hydrazine[J]. Ind Eng Chem Res,2022,61(4):1636−1643. doi: 10.1021/acs.iecr.1c03398
    [12] LI M Y, ZHOU Z Z, HU L, WANG S Y, ZHOU Y Z, ZHU R B, CHU X Z, VINU A, WAN T, GAZORLA G, YI J B, CHU D. W. Hydrazine hydrate intercalated 1T-dominant MoS2 with superior ambient stability for highly efficient electrocatalytic applications[J]. ACS Appl Mater Interfaces,2022,14(14):16338−16347. doi: 10.1021/acsami.2c02675
    [13] QIU Y P, SHI Q, ZHOU L L, CHEN M H, CHEN C, TANG P P, WALK-ER G S, WANG P. NiPt nanoparticles anchored onto hierarchical nanoporous N-doped carbon as an efficient catalyst for hydrogen generation from hydrazine monohydrate[J]. ACS Appl Mater Interfaces,2020,12(16):18617−18624. doi: 10.1021/acsami.0c03096
    [14] GUO F, ZOU H, YAO Q, HUANG B, LU Z H. Monodispersed bi-metallic nanoparticles anchored on TiO2-decorated titanium carbide MXene for efficient hydrogen production from hydra-zine in aqueous solution[J]. Renewable Energy,2020,155:1293−1301. doi: 10.1016/j.renene.2020.04.047
    [15] SINGH S K, ZHANG X B, XU Q. Room-temperature hydrogen generation from hydrous hydrazine for chemical hydrogen storage[J]. J Am Chem Soc,2009,131(29):9894−9895. doi: 10.1021/ja903869y
    [16] SHARMA P, SASSON Y. Highly active Ru-g-C3N4 photocatalyst for visible light assisted selective hydrogen transfer reaction using hydrazine at room temperature[J]. Catal Commun,2017,102:48−52. doi: 10.1016/j.catcom.2017.08.019
    [17] YAO Q L, HE M, HONG X L, CHEN X Y, FENG G, LU Z H. Hydrogen production via selective dehydrogenation of hydrazine borane and hydrous hydrazine over MoOx-promoted Rh catalyst[J]. Int J Hydrogen Energy,2019,44(53):28430−28440. doi: 10.1016/j.ijhydene.2019.02.105
    [18] ZHAO P P, CAO N, LUO W, CHENG G Z. Nanoscale MIL-101 supported RhNi nanoparticles: An efficient catalyst for hydro-gen generation from hydrous hydrazine[J]. J Mater Chem A,2015,3(23):12468−12475. doi: 10.1039/C5TA02201K
    [19] CHEN J M, YAO Q L, ZHU J, CHEN X S, LU Z H. Rh-Ni nanopar-ticles immobilized on Ce(OH)CO3 nanorods as highly efficient catalysts for hydrogen generation from alkaline solution of hydrazine[J]. Int J Hydrogen Energy,2016,41(6):3946−3954. doi: 10.1016/j.ijhydene.2015.12.158
    [20] YANG P, YANG L J, GAO Q, LUO Q, ZHAO X C, MAI X M, FU Q L, DONG M Y, WANG J C, HAO Y W, YANG R Z, LAI X C, WU S D, SHAO Q, DING T, LIN J, GUO Z H. Anchoring carbon nanotubes and post-hydroxylation treatment enhanced Ni nanofiber catalysts towards efficient hydrous hydrazine decomposition for effective hydrogen generation[J]. Chem Commun,2019,55(61):9011−9014. doi: 10.1039/C9CC04559G
    [21] JIANG R, QU X, ZENG F, LI Q, ZHENG X, XU Z, PENG J. MOF-74-immobilized ternary RhNiP nanoparticles as highly efficient hydrous hydrazine dehydrogenation catalysts in alkaline solutions[J]. Int J Hydrogen Energy,2019,44(13):6383−6391. doi: 10.1016/j.ijhydene.2019.01.117
    [22] WAN C, ZHOU L, XU S M, JIN B Y, GE X, QIAN X, XU L X, CHEN F Q, ZHAN X L, YANG Y R, CHENG D G. Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanoparticles for enhanced photocatalytic hydrogen evolution from formic acid[J]. Chem Eng J,2022,429:132388. doi: 10.1016/j.cej.2021.132388
    [23] DU Y S, SU J, LUO W, CHENG G Z. Graphene-supported nickel-platinum nanoparticles as efficient catalyst for hydrogen generation from hydrous hydrazine at room temperature[J]. ACS Appl Mater Interfaces,2015,7(2):1031−1034. doi: 10.1021/am5068436
    [24] WANG J, ZHANG X B, WANG Z L, WANG L M, ZHANG Y. Rhodiumenickel nanoparticles grown on graphene as highly efficient catalyst for complete decomposition of hydrous hydrazine at room temperature for chemical hydrogen storage[J]. Energy Environ Sci,2012,5:6885−6888. doi: 10.1039/c2ee03344e
    [25] ZOU H T, ZHANG S L, HONG X L, YAO Q L, LUO Y, LU Z H. Immobilization of Ni-Pt nanoparticles on MIL-101/rGO composite for hydrogen evolution from hydrous hydrazine and hydrazine borane[J]. J Alloys Compd,2020,835:155426. doi: 10.1016/j.jallcom.2020.155426
    [26] CAO N, YANG L, DU C, SU J, LUO W, CHENG G Z. Highly efficient dehydrogenation of hydrazine over graphene supported flower-like Ni-Pt nanoclusters at room temperature[J]. J Mater Chem A,2014,2(35):14344−14347. doi: 10.1039/C4TA02964J
    [27] XIA B Q, LIU T, LUO W, CHENG G Z. NiPt-MnOx supported on N-doped porous carbon derived from metal-organic frameworks for highly efficient hydrogen generation from hydrazine[J]. J Mater Chem A,2016,4(15):5616−5622. doi: 10.1039/C6TA00766J
    [28] XING W N, TU W G, HAN Z H, HU Y D, MENG Q Q, CHEN G. Template-induced high-crystalline g-C3N4 nanosheets for enhanced photocatalytic H2 evolution[J]. ACS Energy Lett,2018,3(3):514−519. doi: 10.1021/acsenergylett.7b01328
    [29] XU L X, LIU N, HONG B, CUI P, CHENG D G, CHEN F Q, AN Y, WAN C. Nickel-platinum nanoparticles immobilized on graphitic carbon nitride as highly efficient catalyst for hydrogen release from hydrous hydrazine[J]. RSC Adv,2016,6(38):31687−31691. doi: 10.1039/C6RA01335J
    [30] ZHANG W, JIAJUNWANG J J, LIU Z W, PI Y B, TAN R. Visible light-driven oxidant-free dehydrogenation of alcohols in water using porous ultrathin g-C3N4 nanosheets[J]. Green Energy Environ,2022,7:712−722. doi: 10.1016/j.gee.2020.11.019
    [31] 张安琪, 姚淇露, 卢章辉. 水合肼分解产氢催化剂研究进展[J]. 化学学报,2021,79(7):885−902. doi: 10.6023/A21030126

    ZHANG An-qi, YAO Qi-lu, LU Zhang-hui. Recent progress on catalysts for hydrogen evolution from decomposition of hydrous hydrazine[J]. Acta Chim Sin,2021,79(7):885−902. doi: 10.6023/A21030126
    [32] SONG F Z, YANG X C, XU Q. Ultrafine bimetallic Pt-Ni nanoparticles achieved by metal-organic framework templated zirconia/porous carbon/reduced graphene oxide: Remarkable catalytic activity in dehydrogenation of hydrous hydrazine[J]. Small Methods,2020,4(1):1900707. doi: 10.1002/smtd.201900707
    [33] SINGH S K, XU Q. Complete conversion of hydrous hydrazine to hydrogen at room temperature for chemical hydrogen storage[J]. J Am Chem Soc,2009,131:18032−18033. doi: 10.1021/ja908037t
    [34] SONG-Il O, YAN J M, WANG H L, WANG Z L, JIANG Q. Ni/La2O3 catalyst containing low content platinumerhodium for the dehydrogenation of N2H4·H2O at room temperature[J]. J Power Sources,2014,262:386−390. doi: 10.1016/j.jpowsour.2014.03.059
    [35] XIA B, CAO N, DAI H, SU J, WU X, LUO W, CHENG G Z. Bimetallic nickelerhodium nanoparticles supported on ZIF-8 as highly efficient catalysts for hydrogen generation from hydrazine in alkaline solution[J]. ChemCatChem,2014,6:2549−2552. doi: 10.1002/cctc.201402353
    [36] ZHANG M Y, LIU L, LU S, XU L X, AN Y, WAN C. Facile fabrication of NiPt/CNTs as an efficient catalyst for hydrogen production from hydrous hydrazine[J]. ChemistrySelect,2019,4:10494−10500. doi: 10.1002/slct.201902762
    [37] ZHENG J N, LIANG Y, LI G, JIN B Y, WAN C, YE M F, XU L X. Mn-modified graphitic carbon nitride-supported bimetallic PtNi nanoparticles for hydrogen generation from hydrous hydrazine[J]. ChemistrySelect, 2022, https://doi.org/10.1002/slct.202202690.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  333
  • HTML全文浏览量:  179
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-23
  • 修回日期:  2022-12-13
  • 录用日期:  2022-12-13
  • 网络出版日期:  2022-12-26
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回