留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗生素菌渣热解特性及氮迁移转化机理研究

杜家兴 李辰旭 周星星 万淦 徐林林 王贲 李德念 孙路石

杜家兴, 李辰旭, 周星星, 万淦, 徐林林, 王贲, 李德念, 孙路石. 抗生素菌渣热解特性及氮迁移转化机理研究[J]. 燃料化学学报(中英文), 2023, 51(7): 949-958. doi: 10.19906/j.cnki.JFCT.2023003
引用本文: 杜家兴, 李辰旭, 周星星, 万淦, 徐林林, 王贲, 李德念, 孙路石. 抗生素菌渣热解特性及氮迁移转化机理研究[J]. 燃料化学学报(中英文), 2023, 51(7): 949-958. doi: 10.19906/j.cnki.JFCT.2023003
DU Jia-xing, LI Chen-xu, ZHOU Xing-xing, WAN Gan, XU Lin-lin, WANG Ben, LI De-nian, SUN Lu-shi. Pyrolysis behavior of antibiotic residues and the mechanism of nitrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 949-958. doi: 10.19906/j.cnki.JFCT.2023003
Citation: DU Jia-xing, LI Chen-xu, ZHOU Xing-xing, WAN Gan, XU Lin-lin, WANG Ben, LI De-nian, SUN Lu-shi. Pyrolysis behavior of antibiotic residues and the mechanism of nitrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 949-958. doi: 10.19906/j.cnki.JFCT.2023003

抗生素菌渣热解特性及氮迁移转化机理研究

doi: 10.19906/j.cnki.JFCT.2023003
基金项目: 国家重点研发计划(2019YFC1906605)资助
详细信息
    通讯作者:

    Tel: 027-87545526-8207, E-mail: sunlushi@hust.edu.cn

  • 中图分类号: TK6

Pyrolysis behavior of antibiotic residues and the mechanism of nitrogen evolution

Funds: The project was supported by the National Key R&D Program of China (2019YFC1906605)
  • 摘要: 在固定床上进行了不同温度下(300–700 ℃)青霉素菌渣的热解实验,研究了不同热解温度下三相产物的产率及氮的形态和分布。采用反应分子动力学模拟的方法研究了菌渣中含有的氨基酸(天冬氨酸、组氨酸和谷氨酸)和2, 5-哌嗪二酮(DKP)的热解反应机理。结果表明,随着温度的升高,热解气产率增加,热解焦产率减少,热解油的产率先增加后减少,在500 ℃达到最大为42.3%。产物中氮含量随温度的变化与产率变化趋势一致。相较于H2和烃类气体,CO2和CO更容易在低温下生成。酰胺是热解油中的主要含氮化合物,随着热解温度的升高,其占比逐渐下降。氨基酸的脱氨反应是NH3的主要来源,氨基酸分子间发生脱水环化生成DKP类化合物。DKP热解生成NH3、HCN、HNCO等气体和R-NH、R-NH-R自由基,含氮自由基通过与其他自由基结合或发生环化生成酰胺、酮等化合物存在于热解油和热解焦中。
  • FIG. 2468.  FIG. 2468.

    FIG. 2468.  FIG. 2468.

    图  1  青霉素菌渣样品的XPS谱图

    Figure  1  XPS spectrum of penicillin residue samples

    图  2  热解实验装置示意图

    Figure  2  Schematic diagram of the pyrolysis experimental setup

    图  3  优化后的分子模型

    Figure  3  Molecular models of (a) aspartic acid, (b) histidine, (c) glutamic acid and (d) DKP

    图  4  优化后的三维体系模型

    Figure  4  Three-dimensional models of reaction systems of (a) amino acids and (b) DKP

    图  5  不同热解温度下产物的 (a)产率和(b)氮含量

    Figure  5  (a) yield and (b) nitrogen content of pyrolytic products at different temperatures

    图  6  不同温度下主要气体组分的 (a)体积分数和(b)产率

    Figure  6  Volume fraction (a) and yield (b) of gas components at different temperatures

    图  7  不同温度下热解油中含氮化合物的分布

    Figure  7  Distribution of nitrogen-containing compounds in tar at different temperatures

    图  8  不同温度下氨基酸热解产物随时间的变化

    Figure  8  Evolution of pyrolytic products at different temperatures for amino acids

    图  9  (a)天冬氨酸、(b)组氨酸、(c)谷氨酸的热解反应过程

    Figure  9  Process of pyrolysis reaction of (a) aspartic acid, (b) histidine and (c) glutamic acid

    图  10  DKP热解产物随时间的变化

    Figure  10  Evolution of pyrolytic products for DKP

    图  11  DKP的热解反应过程示意图

    Figure  11  Process of pyrolysis reaction of DKP

    表  1  青霉素菌渣样品工业分析及元素分析

    Table  1  Industrial analysis and elemental analysis of penicillin residue samples

    Industrial analysis w/%Elemental analysis w/%
    MAVFCCHO*NS
    3.7528.3465.502.4130.544.9027.364.780.33
    *: by difference
    下载: 导出CSV

    表  2  青霉素菌渣样品中灰分的XRF分析

    Table  2  The XRF analysis of ash in penicillin residue samples

    CompositionCaOSiO2Al2O3P2O5ClK2ONa2OSO3Fe2O3
    Content/%36.2829.5717.776.132.951.991.651.531.52
    下载: 导出CSV
  • [1] 王冰, 刘惠玲, 王璞. 青霉素菌渣理化特性及其资源化利用研究现状[J]. 环境工程,2014,32(2):139−142.

    WANG Bing, LIU Hui-ling, WANG Pu. Current status of research on the physicochemical properties of penicillin residue and its resource utilization[J]. Environ Eng,2014,32(2):139−142.
    [2] 王秋菊. 抗生素菌渣与污泥热解资源化利用效能与机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    WANG Qiu-ju. Research on the efficiencies and mechanisms of antibiotic residues and sludge pyrolysis for research utilization[D]. Harbin: Harbin Institute of Technology, 2021.
    [3] 臧飞. 抗生素酵菌渣减量化处理研究[J]. 煤炭与化工,2019,42(2):132−134.

    ZANG Fei. Study of antibiotic fermentation residue reduction treatment[J]. Coal Chem Ind,2019,42(2):132−134.
    [4] MENG X L, MIAO Y, ZHU Y, WANG X H. Study on the antibiotic bacterial residue for the human health risk assessment[J]. Adv Mat Res,2013,788:476−479.
    [5] AGEGNEHU G, SRIVASTAVA A K, BIRD M I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review[J]. Appl Soil Ecol,2017,119:156−170. doi: 10.1016/j.apsoil.2017.06.008
    [6] 陈冠益, 刘环博, 李健, 颜蓓蓓, 董磊. 抗生素菌渣处理技术研究进展[J]. 环境化学,2021,40(2):459−473. doi: 10.7524/j.issn.0254-6108.2020061302

    CHEN Guan-yi, LIU Huan-bo, LI Jian, YAN Bei-bei, DONG Lei. Treatment of antibiotic mycelial fermentation residue: The critical review[J]. Environ Chem,2021,40(2):459−473. doi: 10.7524/j.issn.0254-6108.2020061302
    [7] WANG Z Q, HONG C, XING Y, LI Z X, LI Y F, FENG L H, HU J S, SUN H P. Thermal characteristics and product formation mechanism during pyrolysis of penicillin fermentation residue[J]. Bioresour Technol,2019,277:46−54. doi: 10.1016/j.biortech.2019.01.030
    [8] DU Y, JIANG X, LV G, MA X J, JIN Y Q, WANG F, CHI Y, YAN J H. Thermal behavior and kinetics of bio-ferment residue/coal blends during co-pyrolysis[J]. Energy Convers Manag,2014,88:459−463. doi: 10.1016/j.enconman.2014.08.068
    [9] 王斌, 董玉平, 毛叶兵, 常加富. 抗生素菌渣的流化床快速热解特性[J]. 化工进展,2017,36(3):1113−1119. doi: 10.16085/j.issn.1000-6613.2017.03.046

    WANG Bin, DONG Yu-ping, MAO Ye-bing, CHANG Jia-fu. Fast pyrolysis behavior of fungus residues in a fluidized bed reactor[J]. Chem Ind Eng Prog,2017,36(3):1113−1119. doi: 10.16085/j.issn.1000-6613.2017.03.046
    [10] 李益飞. 青霉素菌渣热解产物特性及生物油催化脱氮机制[D]. 北京: 北京科技大学, 2021.

    LI Yi-fei. Characteristics of pyrolysis products of penicillin fermentation residue and mechanism of bio-oil catalytic denitrification[D]. Beijing: University of Science and Techonology Beijing, 2021.
    [11] ZHANG G Y, MA D C, PENG C N, LIU X L, XU G W. Process characteristics of hydrothermal treatment of antibiotic residue for solid biofuel[J]. Chem Eng J,2014,252:230−238. doi: 10.1016/j.cej.2014.04.092
    [12] 詹昊, 张晓鸿, 阴秀丽, 吴创之. 生物质热化学转化过程含N污染物形成研究[J]. 化学进展,2016,28(12):1880−1890. doi: 10.7536/PC160438

    ZHAN Hao, ZHANG Xiao-hong, YIN Xiu-li, WU Chuang-zhi. Study on the formation of N-containing pollutants during thermochemical conversion of biomass[J]. Prog Chem,2016,28(12):1880−1890. doi: 10.7536/PC160438
    [13] CHU B W, ZHANG S, LIU J, MA Q X, HE H. Significant concurrent decrease in PM2.5 and NO2 concentrations in China during COVID-19 epidemic[J]. J Environ Sci (China),2021,99(1):346−353.
    [14] COSTANZO W, HILTEN R, JENA U, DAS K C, KASTNER J R. Effect of low temperature hydrothermal liquefaction on catalytic hydrodenitrogenation of algae biocrude and model macromolecules[J]. Algal Res,2016,13:53−68. doi: 10.1016/j.algal.2015.11.009
    [15] 詹昊, 林均衡, 黄艳琴, 阴秀丽, 刘华财. 抗生素菌渣热解N官能团变化特征及其与NOx前驱物关系研究[J]. 燃料化学学报,2017,45(10):1219−1229. doi: 10.3969/j.issn.0253-2409.2017.10.009

    ZHAN Hao, LIN Jun-heng, HUANG Yan-qin, YIN Xiu-li, LIU Hua-cai. Evolution of nitrogen functionalities and their relation to NOx precursors during pyrolysis of antibiotic mycelia wastes[J]. J Fuel Chem Technol,2017,45(10):1219−1229. doi: 10.3969/j.issn.0253-2409.2017.10.009
    [16] ZHU X, YANG S, WANG L, LIU Y C, QIAN F, YAO W Q, ZHANG S C, CHEN J M. Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology[J]. Environ Pollut,2016,211:20−27. doi: 10.1016/j.envpol.2015.12.032
    [17] ZHANG M, SHU L, SHEN X, GUO X Y, TAO S, XING B. Characterization of nitrogen-rich biomaterial-derived biochars and their sorption for aromatic compounds[J]. Environ Pollut,2014,195:84−90. doi: 10.1016/j.envpol.2014.08.018
    [18] HONG D, GUO X. Molecular dynamics simulations of Zhundong coal pyrolysis using reactive force field[J]. Fuel,2017,210:58−66. doi: 10.1016/j.fuel.2017.08.061
    [19] ZHAO T, LI T, XIN Z, ZOU L, ZHANG L. A ReaxFF-based molecular dynamics simulation of the pyrolysis mechanism for polycarbonate[J]. Energy Fuels,2018,32(2):2156−2162. doi: 10.1021/acs.energyfuels.7b03332
    [20] RISMILLER S C, GROVES M M, MENG M, DONG Y, LIN J. Water assisted liquefaction of lignocellulose biomass by ReaxFF based molecular dynamic simulations[J]. Fuel,2018,215:835−843. doi: 10.1016/j.fuel.2017.11.108
    [21] DU J, YU J, QIAO L, TOMAS R R, SUN L S. The reaction mechanism and sulfur evolution during vulcanized nature rubber pyrolysis in the atmosphere of H2O: A ReaxFF molecular dynamics study[J]. Polym Degrad Stab,2022,203:110064. doi: 10.1016/j.polymdegradstab.2022.110064
    [22] WANG J P, WANG Y N, LI G Y, DING Z Z, LU Q, LING Y H. ReaxFF molecular dynamics study on nitrogen-transfer mechanism in the hydropyrolysis process of lignite[J]. Chem Phys Lett,2020,744:137214. doi: 10.1016/j.cplett.2020.137214
    [23] MA D, ZHANG G, ZHAO P, AREEPRAST C, SHEN Y F, YOSHIKAWA K, XU G. Hydrothermal treatment of antibiotic mycelial dreg: More understanding from fuel characteristics[J]. Chem Eng J,2015,273:147−155. doi: 10.1016/j.cej.2015.01.041
    [24] WU Z, SUGIMOTO Y, KAWASHIMA H. Catalytic nitrogen release during a fix-bed pyrolysis of model coal containing pyrrolic or pyridinic nitrogen[J]. Fuel,2001,80(2):251−254. doi: 10.1016/S0016-2361(00)00085-5
    [25] WAN G, YU J, WANG X Y, SUN L S. Study on the pyrolysis behavior of coal-water slurry and coal-oil-water slurry[J]. J Energy Inst,2022,100:10−21. doi: 10.1016/j.joei.2021.10.006
    [26] 常晓囡, 李再兴, 李益飞, 郑子轩. 抗生素菌渣催化热解特性的研究[J]. 环境工程,2022,40(5):18−24. doi: 10.13205/j.hjgc.202205003

    CHANG Xiao-nan, LI Zai-xing, LI Yi-fei, ZHENG Zi-xuan. Study on catalytic pyrolysis characteristics of antibiotic residue[J]. Environ Eng,2022,40(5):18−24. doi: 10.13205/j.hjgc.202205003
    [27] WEI X, YU J, DU J X, SUN L S. A ReaxFF molecular dynamic study on pyrolysis behavior and sulfur transfer during pyrolysis of vulcanized natural rubber[J]. Waste Manag,2022,139:39−49. doi: 10.1016/j.wasman.2021.12.022
    [28] HUANG Y, DONG X, DONG Y, YU Y Z. A molecular dynamics simulation study on nitrobenzene and OH radical in supercritical water[J]. J Mol Liq,2015,206:278−284. doi: 10.1016/j.molliq.2015.03.001
    [29] QI T, BAUSCHLICHER C W, LAWSON J W, DESAI T G, REED E, J. Comparison of ReaxFF, DFTB, and DFT for phenolic pyrolysis. 1. Molecular dynamics simulations[J]. J Phys Chem A,2013,117(44):11115−11125. doi: 10.1021/jp4081096
    [30] MAGDZIARZ A, WERLE S. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS[J]. Waste Manag,2014,34(1):174−179. doi: 10.1016/j.wasman.2013.10.033
    [31] HELOU C, MARIER D, JACOLOT P, NAJAR L A, LERIDON C N, TESSIER F J, WIDEHEM P G. Microorganisms and maillard reaction products: A review of the literature and recent findings[J]. Amino Acids,2014,46(2):267−277. doi: 10.1007/s00726-013-1496-y
    [32] DEBONO O, VILLOT A. Nitrogen products and reaction pathway of nitrogen compounds during the pyrolysis of various organic wastes[J]. J Anal Appl Pyrolysis,2015,114:222−234. doi: 10.1016/j.jaap.2015.06.002
    [33] 陈德民. 生物质中氮赋存形式与热解过程氮迁移转化实验研究[D]. 武汉: 华中科技大学, 2016.

    CHEN De-min. Study on the distribution characteristics of nitrogen and releasing and transformation of nitrogen during pyrolysis of biomass[D]. Wuhan: Huazhong University of Science and Technology, 2016.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  120
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-26
  • 修回日期:  2022-12-29
  • 录用日期:  2022-12-30
  • 网络出版日期:  2023-01-10
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回