留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杨木湿法烘焙预处理耦合金属改性多级孔分子筛催化热解制取轻质芳烃

蔡伟 黄明 朱亮 郑宇博 蔡博 马中青

蔡伟, 黄明, 朱亮, 郑宇博, 蔡博, 马中青. 杨木湿法烘焙预处理耦合金属改性多级孔分子筛催化热解制取轻质芳烃[J]. 燃料化学学报(中英文), 2023, 51(8): 1126-1136. doi: 10.19906/j.cnki.JFCT.2023004
引用本文: 蔡伟, 黄明, 朱亮, 郑宇博, 蔡博, 马中青. 杨木湿法烘焙预处理耦合金属改性多级孔分子筛催化热解制取轻质芳烃[J]. 燃料化学学报(中英文), 2023, 51(8): 1126-1136. doi: 10.19906/j.cnki.JFCT.2023004
CAI Wei, HUANG Ming, ZHU Liang, ZHENG Yu-bo, CAI Bo, MA Zhong-qing. Enhancement of the production of light aromatics from poplar wood by combined approach of wet torrefaction pretreatment and catalytic fast pyrolysis using metal modified hierarchical zeolite[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1126-1136. doi: 10.19906/j.cnki.JFCT.2023004
Citation: CAI Wei, HUANG Ming, ZHU Liang, ZHENG Yu-bo, CAI Bo, MA Zhong-qing. Enhancement of the production of light aromatics from poplar wood by combined approach of wet torrefaction pretreatment and catalytic fast pyrolysis using metal modified hierarchical zeolite[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1126-1136. doi: 10.19906/j.cnki.JFCT.2023004

杨木湿法烘焙预处理耦合金属改性多级孔分子筛催化热解制取轻质芳烃

doi: 10.19906/j.cnki.JFCT.2023004
基金项目: “领雁”研发攻关计划(2022C03092),浙江省自然科学基金(LY21E060001),浙江省属高校基本科研业务费专项资金(2020YQ006),国家林业和草原局科技创新青年拔尖人才项目(2019132617)和浙江大学能源清洁利用国家重点实验室开放基金(ZJU-CEU2020021)资助
详细信息
    作者简介:

    蔡伟(1999—),男,硕士研究生,caiwei962464@163.com

    通讯作者:

    E-mail: mazq@zafu.edu.cn

  • 中图分类号: TK6

Enhancement of the production of light aromatics from poplar wood by combined approach of wet torrefaction pretreatment and catalytic fast pyrolysis using metal modified hierarchical zeolite

Funds: The project was supported by the Key R & D Program of Zhejiang Province (2022C03092), Natural Science Foundation of Zhejiang Province (LY21E060001), the Fundamental Research Funds for the Provincial Universities of Zhejiang (2020YQ006), the Youth Talent Support Program by National Forestry and Grassland Administration (2019132617), the Open Foundation from the State Key Laboratory of Clean Energy Utilization (ZJU-CEU2020021)
  • 摘要: 轻质芳烃是化工领域重要的基础有机原料,生物质催化热解的技术路线可制取生物基的轻质芳烃化学品。首先,采用湿法烘焙预处理,对杨木进行协同脱氧和脱灰改性提质;其次,采用NaOH脱硅预处理和负载活性金属(Zn、Ga和Fe),对微孔HZSM-5进行修饰改性,构建金属改性多级孔HZSM-5催化剂,并将其用于湿法烘焙杨木催化热解,研究烘焙温度、催化剂改性、催化剂与原料质量比和热解温度等参数对轻质芳烃产率的影响。结果表明,随着湿法烘焙温度的升高,杨木的脱氧率和碱/碱土金属脱除率逐渐增加,其中,O、K、Mg、Ca和Na的最大脱除率分别为47.96%、90.99%、86.65%、66.09%和36.29%。与HZSM-5相比,采用NaOH脱硅后的多级孔HZSM-5(Hie-H)及金属改性的多级孔HZSM-5(Ga/Hie-H、Zn/Hie-H和Fe/Hie-H),均促进了轻质芳烃的形成,其中,Zn/Hie-H对杨木湿法烘焙后固体产物催化热解制取轻质芳烃产率最高;在湿法烘焙温度为220 ℃,Zn/Hie-H与烘焙杨木质量比为3∶1,热解温度为850 ℃时,轻质芳烃的产率达到最大值,为7.83 × 107 p.a./mg。
  • FIG. 2578.  FIG. 2578.

    FIG. 2578.  FIG. 2578.

    图  1  湿法烘焙温度对碱和碱土金属含量(a)、结晶度(b)和表面官能团(c)的影响

    Figure  1  Effect of wet torrefaction temperature on the contents of alkali and alkali earth metals, crystallinity, and the surface chemical functional groups

    图  2  金属改性前后多级孔HZSM-5催化剂的 N2吸附-脱附等温曲线(a),孔径分布(b)和NH3-TPD谱图(c)

    Figure  2  N2 adsorption-desorption isotherms (a), pore size distribution curves (b), and NH3-TPD profiles of the parent and metal modified hierarchical HZSM-5

    图  3  湿法烘焙温度对杨木非催化热解生物油组分的影响

    Figure  3  Effect of wet torrefaction temperature on the components in bio-oil derived from non-CFP of PW

    图  4  碱改性处理和金属修饰HZSM-5催化剂对烘焙杨木催化热解生物油组分分布的影响

    Figure  4  Effect of the NaOH and metal modified HZSM-5 on the compound distribution in bio-oil during CFP of torrefied PW

    图  5  催化剂与烘焙杨木的质量比对催化热解生物油组分的影响

    Figure  5  Effect of the mass ratio of catalyst and wet torrefied PW on the compound distribution in bio-oil during CFP of torrefied PW

    图  6  催化热解温度对生物油组分的影响

    Figure  6  Effect of pyrolysis tempearture on the compound distribution in bio-oil during CFP of torrefied PW

    表  1  湿法烘焙温度对杨木基本特性的影响

    Table  1  Effect of wet torrefaction temperature on the yield of torrefied products and the basic properties of torrefied PW

    Temp. /℃Mass yields of torrefied
    product /%
    Ultimate analysis /%Proximate analysis /%Other properties
    gasliquidsolidCHOAVFCQHHV /
    (MJ·kg−1)
    O/C ratiodeoxygenation
    rate /%
    energy
    yield /%
    Raw46.696.2047.024.3282.1713.5116.230.76
    1802.0727.0270.9449.336.1944.370.0984.0815.8317.620.675.6477.02
    2003.4132.5864.0152.076.0041.710.3481.0618.6018.580.6011.2973.28
    22012.4635.5452.0052.895.9141.162.0872.8625.0618.990.5812.4660.84
    24014.9137.1947.9060.285.7833.922.6062.7034.7022.610.4227.8656.23
    26016.5040.1743.3370.155.3724.473.4057.4839.1227.060.2647.9649.76
    下载: 导出CSV

    表  2  金属改性前后多级孔HZSM-5催化剂的孔结构特征和酸量

    Table  2  Pore structural characteristics and acid amount of the parent and metal modified hierarchical HZSM-5

    CatalystaSBET /
    (m2·g−1)
    bvTotal /
    (cm3·g−1)
    cvMicro /
    (cm3·g−1)
    dvMeso /
    (cm3·g−1)
    edPore /
    nm
    Weak acid /
    (mmol·g−1)
    Strong acid /
    (mmol·g−1)
    Total acid /
    (mmol·g−1)
    HZSM-5288.4900.2120.1360.0762.3650.4600.6001.060
    Hie-H357.7290.2710.1170.1533.0300.6250.2300.855
    Ga/Hie-H309.8390.2520.1020.1513.2570.7690.1050.874
    Fe/Hie-H296.6130.2310.1050.1253.1130.6800.1390.819
    Zn/Hie-H298.3960.2260.1020.1253.0360.7480.1020.850
    aSBET: Specific surface area, bvTotal: Total pore volume, cvMicro: Micropore volume, dvMeso: Mesopore volume, edPore: Average pore diameter
    下载: 导出CSV
  • [1] 黄明, 朱亮, 马中青, 周秉亮, 刘晓欢, 叶结旺, 赵超. 金属改性分子筛催化热解木质素制取轻质芳烃[J]. 燃料化学学报,2021,49(3):292−302.

    HUANG Ming, ZHU Liang, MA Zhong-qing, ZHOU Bing-liang, LIU Xiao-huan, YE Jie-wang, ZHAO Chao. Production of light aromatics from the fast pyrolysis of lignin catalyzed by metalmodified H-ZSM-5 zeolites[J]. J Fuel Chem Technol,2021,49(3):292−302.
    [2] 马中青, 王浚浩, 黄明, 蔡伟, 徐嘉龙, 杨优优. 木质素种类和催化剂添加量对热解产物的影响[J]. 农业工程学报,2020,36(1):274−282. doi: 10.11975/j.issn.1002-6819.2020.01.033

    MA Zhong-qing, WANG Jun-hao, HUANG Ming, CAI Wei, XU Jia-long, YANG You-you. Effects of lignin species and catalyst addition on pyrolysis products[J]. Trans CSAE,2020,36(1):274−282. doi: 10.11975/j.issn.1002-6819.2020.01.033
    [3] 马会霞, 周峰, 武光, 傅杰, 乔凯. 多级孔HZSM-5分子筛催化快速热解生物质制芳烃[J]. 化工学报,2020,71(11):5200−5207.

    MA Hui-xia, ZHOU Feng, WU Guang, FU Jie, QIAO Kai. Catalytic fast pyrolysis of biomass to aromatics over hierarchical HZSM-5[J]. J Chem Ind Eng,2020,71(11):5200−5207.
    [4] CEN K H, ZHUANG X H, GAN Z Y, MA Z Q, LI M, CHEN D Y. Effect of the combined pretreatment of leaching and torrefaction on the production of bio-aromatics from rice straw via the shape selective catalytic fast pyrolysis[J]. Energy Reports,2021,7:732−739. doi: 10.1016/j.egyr.2021.01.031
    [5] 朱亮, 黄明, 丁紫霞, 马中青. 烘焙脱氧毛竹与高密度聚乙烯共催化热解制备轻质芳烃[J]. 燃料化学学报,2022,50(8):993−1003.

    ZHU Liang, HUANG Ming, DING Zi-xia, MA Zhong-qing. Production of light bio-aromatics from co-catalytic fast pyrolysis of torrefied bamboo and high-density polyethylene[J]. J Fuel Chem Technol,2022,50(8):993−1003.
    [6] 张雨, 徐佳佳, 马中青, 王浚浩, 李文珠, 张文标. 烘焙预处理对方竹热解产物特性的影响[J]. 浙江农林大学学报,2019,36(5):981−989.

    ZHANG Yu, XU Jia-jia, MA Zhong-qing, WANG Jun-hao, LI Wen-zhu, ZHANG Wen-biao. Pretreatment on characteristics of pyrolysis products for small diameter sympodial bamboo with torrefaction[J]. J Zhejiang A & F Univ,2019,36(5):981−989.
    [7] ZHANG S P, SU Y H, XU D, ZHU S G, ZHANG H L, LIU X Z. Assessment of hydrothermal carbonization and coupling washing with torrefaction of bamboo sawdust for biofuels production[J]. Bioresour Technol,2018,258:111−118. doi: 10.1016/j.biortech.2018.02.127
    [8] SMITH A M, SINGH S, ROSS A B. Fate of inorganic material during hydrothermal carbonization of biomass: Influence of feedstock on combustion behavior of hydrocar[J]. Fuel,2016,169:135−145. doi: 10.1016/j.fuel.2015.12.006
    [9] HOEKMAN S K, BROCH A, FELIX L, FARTHING W. Hydrothermal carbonization (HTC) of loblolly pine using a continuous, reactive twin-screw extruder[J]. Energy Convers Manage,2017,134:247−259. doi: 10.1016/j.enconman.2016.12.035
    [10] NAKASON K, PANYAPINYOPOL B, KANOKKANTAPONG V, VIRIYA-EMPIKUL N, KRAITHONG W, PAVASANT P. Hydrothermal carbonization of unwanted biomass materials: Effect of process temperature and retention time on hydrochar and liquid fraction[J]. J Energy Inst,2018,91(5):786−796. doi: 10.1016/j.joei.2017.05.002
    [11] ZHANG B, YANG B, WU S, GUO W, ZHANG J, Wu Z Q, WANG Z L, LIM C. J. Effect of torrefaction pretreatment on the fast pyrolysis behavior of biomass: Product distribution and kinetic analysis on spruce-pin-fir sawdust[J]. J Anal Appl Pyrolysis,2021,158:105259.
    [12] BACH Q V, TRAN K Q, SKREIBERG Ø. Comparative study on the thermal degradation of dry- and wet-torrefied woods[J]. Appl Energ,2017,185:1051−1058. doi: 10.1016/j.apenergy.2016.01.079
    [13] ZHENG A Q, ZHAO Z L, CHANG S, HUANG Z, ZHAO K, WEI G Q, HE F, LI H B. Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs[J]. Bioresour Technol,2015,176:15−22. doi: 10.1016/j.biortech.2014.10.157
    [14] 张小雷, 李小华, 张瑾, 邵珊珊, 胡超, 蔡忆昔. Na2CO3处理HZSM-5分子筛在线催化生物质热解焦油的研究[J]. 太阳能学报,2020,41(4):264−271.

    ZHANG Xiao-lei, LI Xiao-hua, ZHANG Jin, SHAO Shan-shan, HU Chao, CAI Yi-xi. Study on online catalytic upgrading of biomass tar with Na2CO3 solution treated HZSM-5 zeolite[J]. Acta Energ Sol Sin,2020,41(4):264−271.
    [15] 黄明, 朱亮, 丁紫霞, 毛一婷, 马中青. 生物质三组分与低密度聚乙烯共催化热解制取轻质芳烃的协同作用机理[J]. 化工学报,2022,73(2):699−711 + 475.

    HUANG Ming, ZHU Liang, DING Zi-xia, MAO Yi-ting, MA Zhong-qing. Synergistic interactions of biomass three-component and low-density polyethylene during co-catalytic fast pyrolysis for the production of light aromatics[J]. J Chem Ind Eng,2022,73(2):699−711 + 475.
    [16] LI J, LI X Y, ZHOU G Q, WANG W, WANG C W, KOMARNENI S, WANG Y J. Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions[J]. Appl Catal A: Gen,2014,470:115−122. doi: 10.1016/j.apcata.2013.10.040
    [17] DING K, ZHONG Z P, WANG J, ZHANG B, ADDY M, RUAN R. Effects of alkali-treated hierarchical HZSM-5 zeolites on the production of aromatic hydrocarbons from catalytic fast pyrolysis of waste cardboard[J]. J Anal Appl Pyrolysis,2017,125:153−161. doi: 10.1016/j.jaap.2017.04.006
    [18] ZHENG Y W, WANG F, YANG X Q, HUANG Y B, LIU C, ZHENG Z F, GU J Y. Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5[J]. J Anal Appl Pyrolysis,2017,126:169−179. doi: 10.1016/j.jaap.2017.06.011
    [19] CHE Q F, YANG M J, WANG X H, YANG Q, WILLIAMS L R, YANG H P, ZOU J, ZENG K, ZHU Y J, CHEN Y Q, CHEN H P. Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis[J]. Bioresour Technol,2019,278:248−254. doi: 10.1016/j.biortech.2019.01.081
    [20] DAI G X, WANG S R, ZOU Q, HUANG S Q. Improvement of aromatics production from catalytic pyrolysis of cellulose over metal-modified hierarchical HZSM-5[J]. Fuel Process Technol,2018,179:319−323. doi: 10.1016/j.fuproc.2018.07.023
    [21] CHEN H, CHENG H, ZHOU F, CHEN K Q, QIAO K, LU X Y, OUYANG P K, FU J. Catalytic fast pyrolysis of rice straw to aromatic compounds over hierarchical HZSM-5 produced by alkali treatment and metal-modification[J]. J Anal Appl Pyrolysis,2018,131:76−84. doi: 10.1016/j.jaap.2018.02.009
    [22] HOEKMAN S K, BROCH A, ROBBINS C, ZIELINSKA B, FELIX L. Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks[J]. Biomass Convers Bior,2012,3(2):113−126.
    [23] WANG X H, WU J, CHEN Y Q, PATTIYA A, YANG H P, CHEN H P. Comparative study of wet and dry torrefaction of corn stalk and the effect on biomass pyrolysis polygeneration[J]. Bioresour Technol,2018,258:88−97. doi: 10.1016/j.biortech.2018.02.114
    [24] ZHANG S P, CHEN T, XIONG Y Q, DONG Q. Effects of wet torrefaction on the physicochemical properties and pyrolysis product properties of rice husk[J]. Energ Convers Manage,2017,141:403−409. doi: 10.1016/j.enconman.2016.10.002
    [25] ZHU L, HU Z Y, HUANG M, PENG H H, ZHANG W B, CHEN D Y, MA Z Q. Valorisation of cotton stalk toward bio-aromatics: Effect of wet torrefaction deoxygenation and deminerization pretreatment on catalytic fast pyrolysis using Ga modified hierarchical zeolite[J]. Fuel,2022,330:125571. doi: 10.1016/j.fuel.2022.125571
    [26] 高英, 吴可, 袁巧霞, 陈汉平, 王贤华, 杨海平. 生物质三组分间交互作用对水热解产物及特性的影响[J]. 农业工程学报,2015,31(11):262−268. doi: 10.11975/j.issn.1002-6819.2015.11.038

    GAO Ying, WU Ke, YUAN Qiao-xia, CHEN Han-ping, WANG Xian-hua, YANG Hai-ping. Influence of biomass component interaction on product characteristics during hydrothermal treatment[J]. Trans CSAE,2015,31(11):262−268. doi: 10.11975/j.issn.1002-6819.2015.11.038
    [27] 李小华, 焦丽华, 樊永胜, 陈磊, 蔡忆昔. 纤维素木聚糖和木质素含量对生物质热解特性及产物的影响[J]. 农业工程学报,2015,31(13):236−243. doi: 10.11975/j.issn.1002-6819.2015.13.033

    LI Xiao-hua, JIAO Li-hua, FAN Yong-sheng, CHEN Lei, CAI Yi-xi. Effects of cellulose, xylan and lignin content on biomass pyrolysis characteristics and product distribution[J]. Trans CSAE,2015,31(13):236−243. doi: 10.11975/j.issn.1002-6819.2015.13.033
    [28] NIU X, GAO J, MIAO Q, DONG M, WANG G F, FAN W B, QIN Z F, WANG J G. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous Mesoporous Mater,2014,197:252−261. doi: 10.1016/j.micromeso.2014.06.027
    [29] ZHANG M, RESENDE F L P, MOUTSOGLOU A. Catalytic fast pyrolysis of aspen lignin via Py-GC/MS[J]. Fuel,2014,116:358−369. doi: 10.1016/j.fuel.2013.07.128
    [30] PAASIKALLIO V, KALOGIANNIS K, LAPPAS A, LEHTO J, LEHTONEN J. Catalytic fast pyrolysis: Influencing bio-oil quality with the catalyst-to-biomass ratio[J]. Energy Technol,2017,5:94−103. doi: 10.1002/ente.201600094
    [31] LUO G Q, RESENDE F L P. In-situ and ex-situ upgrading of pyrolysis vapors from beetle- killed trees[J]. Fuel,2016,166:367−375. doi: 10.1016/j.fuel.2015.10.126
    [32] YANG M F, SHAO J G, YANG H P, CHEN Y Q, BAI X W, ZHANG S H, CHEN H P. Catalytic pyrolysis of hemicellulose for the production of light olefins and aromatics over Fe modified ZSM-5 catalysts[J]. Cellulose,2019,26(15):8489−8500. doi: 10.1007/s10570-019-02731-3
    [33] 张孔远, 郑传富, 王崇, 郭宇栋, 刘晨光. 锌改性HZSM-5催化正构烷烃临氢芳构化性能[J]. 石油学报(石油加工),2021,37(3):518−529.

    ZHANG Kong-yuan, ZHENG Chuan-fu, WANG Chong, GUO Yu-dong, LIU Chen-guang. Catalytic Performance of Zn Modified HZSM-5 Catalyst in n-Alkane Hydroaromatization[J]. Acta Pet Sin (Pet Process Sect),2021,37(3):518−529.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  271
  • HTML全文浏览量:  167
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 修回日期:  2022-12-29
  • 录用日期:  2022-12-30
  • 网络出版日期:  2023-01-10
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回