留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载型CuMn2O4催化剂同时去除甲苯与NOx性能及机理研究

刘旭 黄妍 赵令葵 李思密 陶泓帆 饶思敏 朱洪

刘旭, 黄妍, 赵令葵, 李思密, 陶泓帆, 饶思敏, 朱洪. 负载型CuMn2O4催化剂同时去除甲苯与NOx性能及机理研究[J]. 燃料化学学报(中英文), 2023, 51(12): 1856-1865. doi: 10.19906/j.cnki.JFCT.2023024
引用本文: 刘旭, 黄妍, 赵令葵, 李思密, 陶泓帆, 饶思敏, 朱洪. 负载型CuMn2O4催化剂同时去除甲苯与NOx性能及机理研究[J]. 燃料化学学报(中英文), 2023, 51(12): 1856-1865. doi: 10.19906/j.cnki.JFCT.2023024
LIU Xu, HUANG Yan, ZHAO Ling-kui, LI Si-mi, TAO Hong-fan, RAO Si-min, ZHU Hong. Study on performance and mechanism of CuMn2O4 supported catalyst for simultaneous removal of toluene and NOx[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1856-1865. doi: 10.19906/j.cnki.JFCT.2023024
Citation: LIU Xu, HUANG Yan, ZHAO Ling-kui, LI Si-mi, TAO Hong-fan, RAO Si-min, ZHU Hong. Study on performance and mechanism of CuMn2O4 supported catalyst for simultaneous removal of toluene and NOx[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1856-1865. doi: 10.19906/j.cnki.JFCT.2023024

负载型CuMn2O4催化剂同时去除甲苯与NOx性能及机理研究

doi: 10.19906/j.cnki.JFCT.2023024
基金项目: 湖南省教育厅科研项目(22A0129)和国家自然科学基金(52270107)资助
详细信息
    通讯作者:

    E-mail: xtuhy@163.com

  • 中图分类号: X701

Study on performance and mechanism of CuMn2O4 supported catalyst for simultaneous removal of toluene and NOx

Funds: The project was supported by Hunan Provincial Department of Education funded research projects (22A0129), Supported by the National Natural Science Foundation of China (52270107)
  • 摘要: 本研究使用低温溶胶凝胶自燃法制备了不同载体负载的CuMn2O4/MO2 (M=Mn、Ti、Ce)催化剂,并对其同时去除甲苯和NOx的性能进行了评价。结果表明,CeO2载体的加入可显著缓解CuMn2O4上甲苯氧化与NH3-SCR的相互抑制,因此,CuMn2O4/CeO2催化剂表现出最优异的甲苯与NOx同时去除效率。通过BET、XRD、NH3-TPD、O2-TPD及结合XPS与in-situ DRIFTs对催化剂的物化性质及CuMn2O4同时去除甲苯与NOx的反应机理进行了分析。结果表明,CeO2的引入提高了催化剂中Mn4 + /Mnn + 的占比,促使CuMn2O4/CeO2催化剂形成表面丰富的酸性位点和氧空位。此外,Cu、Mn和Ce之间的强相互作用加速电子转移,增强了Cu + + Ce4 + ↔Cu2 + + Ce3 + 、Mn4 + + Ce3 + ↔Mn3 + + Ce4 + 的氧化还原循环。In-situ DRIFTs证实了CuMn2O4催化剂上NH3-SCR反应遵循Langmuir-Hinshelwood机制,甲苯的氧化遵循Mars-van Krevelen机制。因此,CeO2作为载体的CuMn2O4/CeO2催化剂优异的氧化还原能力促使甲苯的完全氧化,表现出优异的甲苯与NOx同时去除能力。本工作可为同时消除甲苯和NOx的催化剂开发提供指导。
  • FIG. 2812.  FIG. 2812.

    FIG. 2812.  FIG. 2812.

    图  1  实验装置示意图

    Figure  1  Schematic diagram of experimental apparatus

    图  2  CuMn2O4/MO2(M=Mn、Ce、Ti)催化剂NH3-SCR还原NO(a), 单独氧化甲苯(b)

    Figure  2  CuMn2O4/MO2 (M=Mn, Ce, Ti) catalyst NH3-SCR reduction of NO (a), alone oxidized toluene (b)

    图  3  CuMn2O4/MO2(M=Mn、Ce、Ti)催化剂协同处理NO(a), 协同处理甲苯(b)

    Figure  3  CuMn2O4/MO2 (M=Mn, Ce, Ti) catalyst synergistic treatment of NO (a), synergistic treatment of toluene (b)

    图  4  CuMn2O4/CeO2的稳定性测试

    Figure  4  Stability test of CuMn2O4/CeO2

    图  5  催化剂吸附等温线

    Figure  5  Catalyst adsorption isotherms

    图  6  负载前后尖晶石的XRD谱图

    Figure  6  Spinel XRD before and after loading

    图  7  不同载体负载尖晶石催化剂的NH3-TPD谱图

    Figure  7  NH3-TPD spectra of spinel catalysts supported by different carriers

    图  8  不同载体负载尖晶石催化剂的O2-TPD谱图

    Figure  8  O2-TPD spectra of spinel catalysts supported by different carriers

    图  9  不同载体催化剂的XPS谱图

    Figure  9  XPS spectra of different supported catalysts

    图  10  CuMn2O4在300 ℃吸附时间原位光谱研究

    Figure  10  In-situ spectroscopic study of CuMn2O4 adsorption time at 300 ℃ (a): Adsorption of toluene and NO after toluene adsorption; (b): Toluene is oxidized into toluene; (c): Toluene is oxidized into NH3-SCR

    图  11  甲苯与NO的同时去除示意图

    Figure  11  Diagram of simultaneous removal of toluene and NO

    表  1  催化剂的比表面积以及孔容孔径

    Table  1  Catalyst specific surface area

    SpeciesSurface area
    /(m2·g−1
    Pore volume
    /(cm3·g−1
    Mean pore
    size /nm
    CuMn2O41.610.002495.99
    CuMn2O4/MnO218.520.041657.89
    CuMn2O4/TiO219.240.047598.32
    CuMn2O4/CeO223.760.052478.84
    下载: 导出CSV

    表  2  催化剂的XPS表面元素比值

    Table  2  XPS of surface element ratio

    SpeciesO Atomic/% Binding energy/eV Cu + /Cu2 + Mn4 + /Mn3 + Atomic /%
    OadsOlattOads/OlatOadsOlatCuMnOM
    CuMn2O452.5447.461.10 531.7530.1 0.57 0.47 7.1626.2966.55
    CuMn2O4/MnO247.8552.150.91531.8530.40.820.506.0126.8167.17
    CuMn2O4/TiO242.2057.800.73532.4530.90.220.226.5623.0665.245.14
    CuMn2O4/CeO235.1164.890.54531.0529.60.280.785.5123.6665.755.08
    下载: 导出CSV
  • [1] XIAO G, GUO Z, LIN B. Cu-VWT catalysts for synergistic elimination of NOx and volatile organic compounds from coal-fired flue gas[J]. Environ Sci Technol,2022,56(14):10095−10104. doi: 10.1021/acs.est.2c02083
    [2] LIU H, CHEN J, WANG Y, YIN R, YANG W, WANG G, SI W, PENG Y, LI J. Interaction mechanism for simultaneous elimination of nitrogen oxides and toluene over the bifunctional CeO2-TiO2 mixed oxide catalyst[J]. Environ Sci Technol,2022,56(7):4467−4476. doi: 10.1021/acs.est.1c08424
    [3] CHEN Y, CHEN Z, ZHANG C, LIN C, TANG J, LIAO Y, MA X. Multiple pollutants control of NO, benzene and toluene from coal-fired plant by Mo/Ni impregnated TiO2-based NH3-SCR catalyst: A DFT supported experimental study[J]. Appl Surf Sci,2022,599:153986. doi: 10.1016/j.apsusc.2022.153986
    [4] FANG D, XIE J, MEI D, ZHANG Y, HE F, LIU X, LI Y. Effect of CuMn2O4 spinel in Cu-Mn oxide catalysts on selective catalytic reduction of NOx with NH3 at low temperature[J]. RSC Adv,2014,4(49):25540−25551.
    [5] ZHANG Y, LI Y, ZENG Z, HU J, HUANG Z. Promotion mechanism of CuMn2O4 modification with NaOH on toluene oxidation: Boosting the ring-opening of benzoate[J]. Fuel,2022,314:122747.
    [6] PAN H, CHEN Z, MA M, GUO T, LING X, ZHENG Y, HE C, CHEN J. Mutual inhibition mechanism of simultaneous catalytic removal of NOx and toluene on Mn-based catalysts[J]. J Colloid Interface Sci,2022,607:1189−1200.
    [7] YE L, LU P, CHEN X, FANG X, PENG P, LI Y, HUANG J, BAO H. The deactivation mechanism of toluene on MnOx-CeO2 SCR catalyst[J]. Appl Catal B: Environ,2020,277:119257.
    [8] LI Z, GAO, WANG Q. The influencing mechanism of NH3 and NOx addition on the catalytic oxidation of toluene over Mn2Cu1Al1Ox catalyst[J]. J Cleaner Prod,2022,348:131152. doi: 10.1016/j.jclepro.2022.131152
    [9] ZHOU X, LIAO W, CAI N, ZHANG H, YANG H, SHAO J. Experiment and mechanism investigation on simultaneously catalytic reduction of NOx and oxidation of toluene over MnOx/Cu-SAPO-34[J]. Appl Surf Sci,2023,611:155628. doi: 10.1016/j.apsusc.2022.155628
    [10] 张娜, 黄妍, 张俊丰, 赵令葵, 李思密, 陶泓帆, 伍云凡. 负载型LaCoO3/MO2催化氧化甲苯与NO的性能研究[J]. 燃料化学学报,2022,50(7):868−876.

    ZHANG Na, HUANG Yan, ZHANG Jun-feng, ZHAO Ling-kui, LI Si-mi, TAO Hong-fan, WU Yun-fan. Catalytic oxidation of toluene and NO by supported LaCoO3/MO2[J]. J Fuel Chem Technol,2022,50(7):868−876.
    [11] WANG Z, LIU J, YANG Y, YU Y, YAN X, ZHANG Z. AMn2O4 (A=Cu, Ni and Zn) sorbents coupling high adsorption and regeneration performance for elemental mercury removal from syngas[J]. J Haz Mater,2020,388:121738. doi: 10.1016/j.jhazmat.2019.121738
    [12] KANG M, PARK E D, KIM J M, YIE J. Cu-Mn mixed oxides for low temperature NO reduction with NH3[J]. Catal Today,2006,111(3/4):236−241. doi: 10.1016/j.cattod.2005.10.032
    [13] FANG R, LIU F, LIU J, LI Y. Experimental and theoretical insights into the reaction mechanism of spinel CuMn2O4 with CO in chemical-looping combustion[J]. Appl Surf Sci,2021,561:150065.
    [14] ZHANG Y, LI Y, ZENG Z, HU J, HOU Y, HUANG Z. Synergically engineering Cu + and oxygen vacancies in CuMn2O4 catalysts for enhanced toluene oxidation performance[J]. Mol Catal,2022,517:112043.
    [15] 蒋露. SO2、H2O对镧铁系钙钛矿催化剂协同催化氧化NO和甲苯的影响机制研究[D]. 湘潭: 湘潭大学, 2021.

    JIANG Lu. Effect mechanism of SO2 and H2O on synergistic catalytic oxidation of NO and Toluene with lanthanide perovskite catalyst[D]. Xiangtan: Xiangtan University, 2021.
    [16] LIN B, GUO Z, LI J, XIAO G, YE D, YUN H. V-Cu bimetallic oxide supported catalysts for synergistic removal of toluene and NOx from coal-fired flue gas: The crucial role of support[J]. Chem Eng J,2023,458:141443.
    [17] YANG J, HU S, FANG Y, HOANG S, GOU Y. Oxygen vacancy promoted O2 activation over perovskite oxide for low-temperature CO oxidation[J]. ACS Catal,2019,9(11):9751−9763. doi: 10.1021/acscatal.9b02408
    [18] SHI C, YIN D, LI J. Novel LaMnNi mixed metal oxides catalysts for selective catalytic oxidation of NO[C]//The 2019 North American Catalysis Society Meeting, 2019. NAM, 262019.
    [19] HEREDIA L, COLOMBO E, QUAINO P, COLLINS S. Toluene adsorption on CeO2 (111) studied by FTIR and DFT[J]. Top Catal,2022,65(7/8):934−943. doi: 10.1007/s11244-022-01625-2
    [20] WANG J, XING Y, SU W, LI K, ZHANG W. Bifunctional Mn-Cu-CeOx/γ-Al2O3 catalysts for low-temperature simultaneous removal of NOx and CO[J]. Fuel,2022,321:124050.
    [21] ZHANG X, LV X, BI F. Highly efficient Mn2O3 catalysts derived from Mn-MOFs for toluene oxidation: The influence of MOFs precursors[J]. Mol Catal,2020,482:110707.
    [22] LI Z, GAO Y, WANG Q. The influencing mechanism of NH3 and NOx addition on the catalytic oxidation of toluene over Mn2Cu1Al1Ox catalyst [J]. J Clean Prod, 2022, 348: 131152 .
    [23] ZHONG J, ZENG Y, ZHANG M, FANG W, XIAO D, WU J, CHEN P, FU M, YE D. Toluene oxidation process and proper mechanism over Co3O4 nanotubes: Investigation through in-situ DRIFTS combined with PTR-TOF-MS and quasi in-situ XPS[J]. Chem Eng J,2020,397:125375. doi: 10.1016/j.cej.2020.125375
    [24] LU J, ZHONG J, REN Q, LI J, SONG L, MO S, ZHANG M, CHEN P, FU M, YE D. Construction of Cu-Ce interface for boosting toluene oxidation: Study of Cu-Ce interaction and intermediates identified by in situ DRIFTS[J]. Chin Chem Lett,2021,32(11):3435−3439. doi: 10.1016/j.cclet.2021.05.029
    [25] BESSELMANN S, LÖFFLER E, MUHLER M. On the role of monomeric vanadyl species in toluene adsorption and oxidation on V2O5/TiO2 catalysts: A Raman and in situ DRIFTS study[J]. J Mol Catal A: Chem,2000,162(1/2):401−411. doi: 10.1016/S1381-1169(00)00307-1
    [26] ZHANG X, LI H, SONG Z. In situ DRIFT spectroscopy study into the reaction mechanism of toluene over CeMo catalysts[J]. JECE,2022,10(6):108895.
    [27] CHEN Y, CHEN Z, ZHANG C, CHEN L, TANG J, LIAO Y, MA X. Multiple pollutants control of NO, benzene and toluene from coal-fired plant by Mo/Ni impregnated TiO2-based NH3-SCR catalyst: A DFT supported experimental study[J]. Appl Surf Sci,2022,599:1539869.
    [28] JIA Y, JIANG J, ZHENG R, GUO L, GU M. Insight into the reaction mechanism over PMoA for low temperature NH3-SCR: A combined In-situ DRIFTs and DFT transition state calculations[J]. J Haz Mater,2021,412:125258. doi: 10.1016/j.jhazmat.2021.125258
    [29] YANG Y, LIU J, LIU F, WANG Z. Reaction mechanism for NH3-SCR of NOx over CuMn2O4 catalyst[J]. Chem Eng J,2019,361:578−587. doi: 10.1016/j.cej.2018.12.103
    [30] ZHAO L, YANG Y, LIU J, DING J. Mechanistic insights into benzene oxidation over CuMn2O4 catalyst[J]. J Haz Mater,2022,431:128640. doi: 10.1016/j.jhazmat.2022.128640
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  150
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-08
  • 修回日期:  2023-03-22
  • 录用日期:  2023-03-24
  • 网络出版日期:  2023-04-06
  • 刊出日期:  2023-12-05

目录

    /

    返回文章
    返回